These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
255 related articles for article (PubMed ID: 19032344)
1. Functionally important structural elements of the cyanobacterial clock-related protein Pex. Kurosawa S; Murakami R; Onai K; Morishita M; Hasegawa D; Iwase R; Uzumaki T; Hayashi F; Kitajima-Ihara T; Sakata S; Murakami M; Kouyama T; Ishiura M Genes Cells; 2009 Jan; 14(1):1-16. PubMed ID: 19032344 [TBL] [Abstract][Full Text] [Related]
2. Expression of the circadian clock-related gene pex in cyanobacteria increases in darkness and is required to delay the clock. Takai N; Ikeuchi S; Manabe K; Kutsuna S J Biol Rhythms; 2006 Aug; 21(4):235-44. PubMed ID: 16864644 [TBL] [Abstract][Full Text] [Related]
3. Structural and biochemical characterization of a cyanobacterium circadian clock-modifier protein. Arita K; Hashimoto H; Igari K; Akaboshi M; Kutsuna S; Sato M; Shimizu T J Biol Chem; 2007 Jan; 282(2):1128-35. PubMed ID: 17098741 [TBL] [Abstract][Full Text] [Related]
4. The circadian clock-related gene pex regulates a negative cis element in the kaiA promoter region. Kutsuna S; Kondo T; Ikegami H; Uzumaki T; Katayama M; Ishiura M J Bacteriol; 2007 Nov; 189(21):7690-6. PubMed ID: 17704219 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure of the C-terminal clock-oscillator domain of the cyanobacterial KaiA protein. Uzumaki T; Fujita M; Nakatsu T; Hayashi F; Shibata H; Itoh N; Kato H; Ishiura M Nat Struct Mol Biol; 2004 Jul; 11(7):623-31. PubMed ID: 15170179 [TBL] [Abstract][Full Text] [Related]
6. CmpR is important for circadian phasing and cell growth. Tanaka H; Kitamura M; Nakano Y; Katayama M; Takahashi Y; Kondo T; Manabe K; Omata T; Kutsuna S Plant Cell Physiol; 2012 Sep; 53(9):1561-9. PubMed ID: 22744912 [TBL] [Abstract][Full Text] [Related]
7. Transcriptional repressor CopR: the structured acidic C terminus is important for protein stability. Kuhn K; Steinmetzer K; Brantl S J Mol Biol; 2000 Jul; 300(5):1021-31. PubMed ID: 10903850 [TBL] [Abstract][Full Text] [Related]
8. Transcriptional regulation of the agr locus and the identification of DNA binding residues of the global regulatory protein SarR in Staphylococcus aureus. Manna AC; Cheung AL Mol Microbiol; 2006 Jun; 60(5):1289-301. PubMed ID: 16689803 [TBL] [Abstract][Full Text] [Related]
9. Negative control of the high light-inducible hliA gene and implications for the activities of the NblS sensor kinase in the cyanobacterium Synechococcus elongatus strain PCC 7942. Kappell AD; Bhaya D; van Waasbergen LG Arch Microbiol; 2006 Nov; 186(5):403-13. PubMed ID: 16897032 [TBL] [Abstract][Full Text] [Related]
10. DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Yamazaki H; Tomono A; Ohnishi Y; Horinouchi S Mol Microbiol; 2004 Jul; 53(2):555-72. PubMed ID: 15228534 [TBL] [Abstract][Full Text] [Related]
11. The ManR specifically binds to the promoter of a Nramp transporter gene in Anabaena sp. PCC 7120: a novel regulatory DNA motif in cyanobacteria. Huang W; Wu Q Biochem Biophys Res Commun; 2004 Apr; 317(2):578-85. PubMed ID: 15063797 [TBL] [Abstract][Full Text] [Related]
12. Disease-associated substitutions in the filamin B actin binding domain confer enhanced actin binding affinity in the absence of major structural disturbance: Insights from the crystal structures of filamin B actin binding domains. Sawyer GM; Clark AR; Robertson SP; Sutherland-Smith AJ J Mol Biol; 2009 Jul; 390(5):1030-47. PubMed ID: 19505475 [TBL] [Abstract][Full Text] [Related]
13. Role of NtcA, a cyanobacterial global nitrogen regulator, in the regulation of sucrose metabolism gene expression in Anabaena sp. PCC 7120. Marcozzi C; Cumino AC; Salerno GL Arch Microbiol; 2009 Mar; 191(3):255-63. PubMed ID: 19082579 [TBL] [Abstract][Full Text] [Related]
14. XylS-Pm promoter interactions through two helix-turn-helix motifs: identifying XylS residues important for DNA binding and activation. Domínguez-Cuevas P; Marín P; Marqués S; Ramos JL J Mol Biol; 2008 Jan; 375(1):59-69. PubMed ID: 18005985 [TBL] [Abstract][Full Text] [Related]
15. Structure and function of the arginine repressor-operator complex from Bacillus subtilis. Garnett JA; Marincs F; Baumberg S; Stockley PG; Phillips SE J Mol Biol; 2008 May; 379(2):284-98. PubMed ID: 18455186 [TBL] [Abstract][Full Text] [Related]
16. A period-extender gene, pex, that extends the period of the circadian clock in the cyanobacterium Synechococcus sp. strain PCC 7942. Kutsuna S; Kondo T; Aoki S; Ishiura M J Bacteriol; 1998 Apr; 180(8):2167-74. PubMed ID: 9555901 [TBL] [Abstract][Full Text] [Related]
17. Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC. Garces RG; Wu N; Gillon W; Pai EF EMBO J; 2004 Apr; 23(8):1688-98. PubMed ID: 15071498 [TBL] [Abstract][Full Text] [Related]
18. Genome streamlining results in loss of robustness of the circadian clock in the marine cyanobacterium Prochlorococcus marinus PCC 9511. Holtzendorff J; Partensky F; Mella D; Lennon JF; Hess WR; Garczarek L J Biol Rhythms; 2008 Jun; 23(3):187-99. PubMed ID: 18487411 [TBL] [Abstract][Full Text] [Related]
19. Mechanism of DNA cleavage by the DNA/RNA-non-specific Anabaena sp. PCC 7120 endonuclease NucA and its inhibition by NuiA. Meiss G; Gimadutdinow O; Haberland B; Pingoud A J Mol Biol; 2000 Mar; 297(2):521-34. PubMed ID: 10715218 [TBL] [Abstract][Full Text] [Related]
20. Analysis of the Fine-Tuning of Cyanobacterial Circadian Phase by Monochromatic Light and Long-Day Conditions. Kobayashi T; Obana Y; Kuboi N; Kitayama Y; Hayashi S; Oka M; Wada N; Arita K; Shimizu T; Sato M; Kanaly RA; Kutsuna S Plant Cell Physiol; 2016 Jan; 57(1):105-14. PubMed ID: 26578695 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]