BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19032786)

  • 1. Functional insight into Maelstrom in the germline piRNA pathway: a unique domain homologous to the DnaQ-H 3'-5' exonuclease, its lineage-specific expansion/loss and evolutionarily active site switch.
    Zhang D; Xiong H; Shan J; Xia X; Trudeau VL
    Biol Direct; 2008 Nov; 3():48. PubMed ID: 19032786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A unique HMG-box domain of mouse Maelstrom binds structured RNA but not double stranded DNA.
    Genzor P; Bortvin A
    PLoS One; 2015; 10(3):e0120268. PubMed ID: 25807393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metazoan Maelstrom is an RNA-binding protein that has evolved from an ancient nuclease active in protists.
    Chen KM; Campbell E; Pandey RR; Yang Z; McCarthy AA; Pillai RS
    RNA; 2015 May; 21(5):833-9. PubMed ID: 25778731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystal Structure and Activity of the Endoribonuclease Domain of the piRNA Pathway Factor Maelstrom.
    Matsumoto N; Sato K; Nishimasu H; Namba Y; Miyakubi K; Dohmae N; Ishitani R; Siomi H; Siomi MC; Nureki O
    Cell Rep; 2015 Apr; 11(3):366-75. PubMed ID: 25865890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoplasmic compartmentalization of the fetal piRNA pathway in mice.
    Aravin AA; van der Heijden GW; Castañeda J; Vagin VV; Hannon GJ; Bortvin A
    PLoS Genet; 2009 Dec; 5(12):e1000764. PubMed ID: 20011505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes.
    Lim SL; Tsend-Ayush E; Kortschak RD; Jacob R; Ricciardelli C; Oehler MK; Grützner F
    Biol Reprod; 2013 Dec; 89(6):136. PubMed ID: 24108303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional and structural insights into the piRNA factor Maelstrom.
    Sato K; Siomi MC
    FEBS Lett; 2015 Jun; 589(14):1688-93. PubMed ID: 25836734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains.
    Moser MJ; Holley WR; Chatterjee A; Mian IS
    Nucleic Acids Res; 1997 Dec; 25(24):5110-8. PubMed ID: 9396823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of bacteriophage T4 RNase H, a 5' to 3' RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins.
    Mueser TC; Nossal NG; Hyde CC
    Cell; 1996 Jun; 85(7):1101-12. PubMed ID: 8674116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of the protein from Arabidopsis thaliana gene At5g06450, a putative DnaQ-like exonuclease domain-containing protein with homohexameric assembly.
    Smith DW; Han MR; Park JS; Kim KR; Yeom T; Lee JY; Kim DJ; Bingman CA; Kim HJ; Jo K; Han BW; Phillips GN
    Proteins; 2013 Sep; 81(9):1669-1675. PubMed ID: 23616405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distant structural homology leads to the functional characterization of an archaeal PIN domain as an exonuclease.
    Arcus VL; Bäckbro K; Roos A; Daniel EL; Baker EN
    J Biol Chem; 2004 Apr; 279(16):16471-8. PubMed ID: 14734548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural biochemistry of a type 2 RNase H: RNA primer recognition and removal during DNA replication.
    Chapados BR; Chai Q; Hosfield DJ; Qiu J; Shen B; Tainer JA
    J Mol Biol; 2001 Mar; 307(2):541-56. PubMed ID: 11254381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases.
    Iyer LM; Koonin EV; Aravind L
    BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel conserved domains in proteins with predicted roles in eukaryotic cell-cycle regulation, decapping and RNA stability.
    Anantharaman V; Aravind L
    BMC Genomics; 2004 Jul; 5(1):45. PubMed ID: 15257761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity.
    Parker JS; Roe SM; Barford D
    EMBO J; 2004 Dec; 23(24):4727-37. PubMed ID: 15565169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification.
    Majorek KA; Dunin-Horkawicz S; Steczkiewicz K; Muszewska A; Nowotny M; Ginalski K; Bujnicki JM
    Nucleic Acids Res; 2014 Apr; 42(7):4160-79. PubMed ID: 24464998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteomic analysis reveals that MAEL, a component of nuage, interacts with stress granule proteins in cancer cells.
    Yuan L; Xiao Y; Zhou Q; Yuan D; Wu B; Chen G; Zhou J
    Oncol Rep; 2014 Jan; 31(1):342-50. PubMed ID: 24189637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive amino acid replacements accompanied by domain fusion in reverse transcriptase.
    Shirai T; Go M
    J Mol Evol; 1997; 44 Suppl 1():S155-62. PubMed ID: 9071024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional consequences and exonuclease kinetic parameters of point mutations in bacteriophage T4 DNA polymerase.
    Abdus Sattar AK; Lin TC; Jones C; Konigsberg WH
    Biochemistry; 1996 Dec; 35(51):16621-9. PubMed ID: 8987997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.