BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1875 related articles for article (PubMed ID: 19033189)

  • 1. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.
    Wise DR; DeBerardinis RJ; Mancuso A; Sayed N; Zhang XY; Pfeiffer HK; Nissim I; Daikhin E; Yudkoff M; McMahon SB; Thompson CB
    Proc Natl Acad Sci U S A; 2008 Dec; 105(48):18782-7. PubMed ID: 19033189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glioblastoma cells require glutamate dehydrogenase to survive impairments of glucose metabolism or Akt signaling.
    Yang C; Sudderth J; Dang T; Bachoo RM; McDonald JG; DeBerardinis RJ
    Cancer Res; 2009 Oct; 69(20):7986-93. PubMed ID: 19826036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon source metabolism and its regulation in cancer cells.
    Yin C; Qie S; Sang N
    Crit Rev Eukaryot Gene Expr; 2012; 22(1):17-35. PubMed ID: 22339657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor suppressor NDRG2 inhibits glycolysis and glutaminolysis in colorectal cancer cells by repressing c-Myc expression.
    Xu X; Li J; Sun X; Guo Y; Chu D; Wei L; Li X; Yang G; Liu X; Yao L; Zhang J; Shen L
    Oncotarget; 2015 Sep; 6(28):26161-76. PubMed ID: 26317652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mammalian Target of Rapamycin 2 (MTOR2) and C-MYC Modulate Glucosamine-6-Phosphate Synthesis in Glioblastoma (GBM) Cells Through Glutamine: Fructose-6-Phosphate Aminotransferase 1 (GFAT1).
    Liu B; Huang ZB; Chen X; See YX; Chen ZK; Yao HK
    Cell Mol Neurobiol; 2019 Apr; 39(3):415-434. PubMed ID: 30771196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism.
    Gao P; Tchernyshyov I; Chang TC; Lee YS; Kita K; Ochi T; Zeller KI; De Marzo AM; Van Eyk JE; Mendell JT; Dang CV
    Nature; 2009 Apr; 458(7239):762-5. PubMed ID: 19219026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular determinants of de novo nucleotide biosynthesis in cancer cells.
    Tong X; Zhao F; Thompson CB
    Curr Opin Genet Dev; 2009 Feb; 19(1):32-7. PubMed ID: 19201187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial p32 is upregulated in Myc expressing brain cancers and mediates glutamine addiction.
    Fogal V; Babic I; Chao Y; Pastorino S; Mukthavaram R; Jiang P; Cho YJ; Pingle SC; Crawford JR; Piccioni DE; Kesari S
    Oncotarget; 2015 Jan; 6(2):1157-70. PubMed ID: 25528767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT4 protein suppresses tumor formation in genetic models of Myc-induced B cell lymphoma.
    Jeong SM; Lee A; Lee J; Haigis MC
    J Biol Chem; 2014 Feb; 289(7):4135-44. PubMed ID: 24368766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NOX4 supports glycolysis and promotes glutamine metabolism in non-small cell lung cancer cells.
    Zeng C; Wu Q; Wang J; Yao B; Ma L; Yang Z; Li J; Liu B
    Free Radic Biol Med; 2016 Dec; 101():236-248. PubMed ID: 27989748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutaminolysis: supplying carbon or nitrogen or both for cancer cells?
    Dang CV
    Cell Cycle; 2010 Oct; 9(19):3884-6. PubMed ID: 20948290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Therapeutic targeting of Myc-reprogrammed cancer cell metabolism.
    Dang CV
    Cold Spring Harb Symp Quant Biol; 2011; 76():369-74. PubMed ID: 21960526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MYC-induced cancer cell energy metabolism and therapeutic opportunities.
    Dang CV; Le A; Gao P
    Clin Cancer Res; 2009 Nov; 15(21):6479-83. PubMed ID: 19861459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition.
    Fan Y; Dickman KG; Zong WX
    J Biol Chem; 2010 Mar; 285(10):7324-33. PubMed ID: 20018866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waves of gene regulation suppress and then restore oxidative phosphorylation in cancer cells.
    Smolková K; Plecitá-Hlavatá L; Bellance N; Benard G; Rossignol R; Ježek P
    Int J Biochem Cell Biol; 2011 Jul; 43(7):950-68. PubMed ID: 20460169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MYC sensitises cells to apoptosis by driving energetic demand.
    Edwards-Hicks J; Su H; Mangolini M; Yoneten KK; Wills J; Rodriguez-Blanco G; Young C; Cho K; Barker H; Muir M; Guerrieri AN; Li XF; White R; Manasterski P; Mandrou E; Wills K; Chen J; Abraham E; Sateri K; Qian BZ; Bankhead P; Arends M; Gammoh N; von Kriegsheim A; Patti GJ; Sims AH; Acosta JC; Brunton V; Kranc KR; Christophorou M; Pearce EL; Ringshausen I; Finch AJ
    Nat Commun; 2022 Aug; 13(1):4674. PubMed ID: 35945217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rethinking the Warburg effect with Myc micromanaging glutamine metabolism.
    Dang CV
    Cancer Res; 2010 Feb; 70(3):859-62. PubMed ID: 20086171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coordination of glucose and glutamine utilization by an expanded Myc network.
    Kaadige MR; Elgort MG; Ayer DE
    Transcription; 2010; 1(1):36-40. PubMed ID: 21327161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. c-Myc programs fatty acid metabolism and dictates acetyl-CoA abundance and fate.
    Edmunds LR; Sharma L; Kang A; Lu J; Vockley J; Basu S; Uppala R; Goetzman ES; Beck ME; Scott D; Prochownik EV
    J Biol Chem; 2014 Sep; 289(36):25382-92. PubMed ID: 25053415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.
    Gaglio D; Metallo CM; Gameiro PA; Hiller K; Danna LS; Balestrieri C; Alberghina L; Stephanopoulos G; Chiaradonna F
    Mol Syst Biol; 2011 Aug; 7():523. PubMed ID: 21847114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 94.