These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19033677)

  • 1. N-terminal domain-deleted mu transposase exhibits increased transposition activity with low target site preference in modified buffers.
    Kim YC; Morrison SL
    J Mol Microbiol Biotechnol; 2009; 17(1):30-40. PubMed ID: 19033677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes.
    Goryshin IY; Jendrisak J; Hoffman LM; Meis R; Reznikoff WS
    Nat Biotechnol; 2000 Jan; 18(1):97-100. PubMed ID: 10625401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sub-terminal sequences modulating IS30 transposition in vivo and in vitro.
    Szabó M; Kiss J; Nagy Z; Chandler M; Olasz F
    J Mol Biol; 2008 Jan; 375(2):337-52. PubMed ID: 18022196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells.
    Converse AD; Belur LR; Gori JL; Liu G; Amaya F; Aguilar-Cordova E; Hackett PB; McIvor RS
    Biosci Rep; 2004 Dec; 24(6):577-94. PubMed ID: 16158196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The N-terminus of Himar1 mariner transposase mediates multiple activities during transposition.
    Butler MG; Chakraborty SA; Lampe DJ
    Genetica; 2006 May; 127(1-3):351-66. PubMed ID: 16850239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tn5 as a molecular genetics tool: In vitro transposition and the coupling of in vitro technologies with in vivo transposition.
    Reznikoff WS; Goryshin IY; Jendrisak JJ
    Methods Mol Biol; 2004; 260():83-96. PubMed ID: 15020804
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors responsible for target site selection in Tn10 transposition: a role for the DDE motif in target DNA capture.
    Junop MS; Haniford DB
    EMBO J; 1997 May; 16(10):2646-55. PubMed ID: 9184211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MuA transposase separates DNA sequence recognition from catalysis.
    Goldhaber-Gordon I; Early MH; Baker TA
    Biochemistry; 2003 Dec; 42(49):14633-42. PubMed ID: 14661976
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutant Mos1 mariner transposons are hyperactive in Aedes aegypti.
    Pledger DW; Coates CJ
    Insect Biochem Mol Biol; 2005 Oct; 35(10):1199-207. PubMed ID: 16102425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of target DNA binding in Mu DNA transposition by alteration of position 99 in the Mu B protein.
    Millner A; Chaconas G
    J Mol Biol; 1998 Jan; 275(2):233-43. PubMed ID: 9466906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric Mos1 and piggyBac transposases result in site-directed integration.
    Maragathavally KJ; Kaminski JM; Coates CJ
    FASEB J; 2006 Sep; 20(11):1880-2. PubMed ID: 16877528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement and rescue of target capture in Tn10 transposition by site-specific modifications in target DNA.
    Pribil PA; Wardle SJ; Haniford DB
    Mol Microbiol; 2004 May; 52(4):1173-86. PubMed ID: 15130133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Target-site preferences of Sleeping Beauty transposons.
    Liu G; Geurts AM; Yae K; Srinivasan AR; Fahrenkrug SC; Largaespada DA; Takeda J; Horie K; Olson WK; Hackett PB
    J Mol Biol; 2005 Feb; 346(1):161-73. PubMed ID: 15663935
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mu transpososome activity-profiling yields hyperactive MuA variants for highly efficient genetic and genome engineering.
    Rasila TS; Pulkkinen E; Kiljunen S; Haapa-Paananen S; Pajunen MI; Salminen A; Paulin L; Vihinen M; Rice PA; Savilahti H
    Nucleic Acids Res; 2018 May; 46(9):4649-4661. PubMed ID: 29294068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA binding specificity and cleavage activity of Pacmmar transposase.
    Delaurière L; Chénais B; Pradier E; Hardivillier Y; Renault S; Casse N
    Biochemistry; 2009 Aug; 48(30):7279-86. PubMed ID: 19530701
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuned for transposition: molecular determinants underlying the hyperactivity of a Stowaway MITE.
    Yang G; Nagel DH; Feschotte C; Hancock CN; Wessler SR
    Science; 2009 Sep; 325(5946):1391-4. PubMed ID: 19745152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Transposition as a way of existence: phage Mu].
    Mit'kina LN
    Genetika; 2003 May; 39(5):637-56. PubMed ID: 12838611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atypical association of DDE transposition with conjugation specifies a new family of mobile elements.
    Brochet M; Da Cunha V; Couvé E; Rusniok C; Trieu-Cuot P; Glaser P
    Mol Microbiol; 2009 Feb; 71(4):948-59. PubMed ID: 19183283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of a transposon insertion mutant library for bovine herpesvirus 4 cloned as a bacterial artificial chromosome by in vitro MuA based DNA transposition system.
    Donofrio G; Martignani E; Sartori C; Vanderplasschen A; Cavirani S; Flammini CF; Gillet L
    J Virol Methods; 2007 Apr; 141(1):63-70. PubMed ID: 17182112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational isomerization in phage Mu transpososome assembly: effects of the transpositional enhancer and of MuB.
    Mizuuchi M; Mizuuchi K
    EMBO J; 2001 Dec; 20(23):6927-35. PubMed ID: 11726528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.