These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19033767)

  • 1. A modified elastance model to control mock ventricles in real-time: numerical and experimental validation.
    Colacino FM; Moscato F; Piedimonte F; Danieli G; Nicosia S; Arabia M
    ASAIO J; 2008; 54(6):563-73. PubMed ID: 19033767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling, analysis, and validation of a pneumatically driven left ventricle for use in mock circulatory systems.
    Colacino FM; Arabia M; Moscato F; Danieli GA
    Med Eng Phys; 2007 Oct; 29(8):829-39. PubMed ID: 17055763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastance-based control of a mock circulatory system.
    Baloa LA; Boston JR; Antaki JF
    Ann Biomed Eng; 2001 Mar; 29(3):244-51. PubMed ID: 11310786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of left ventricular function and drive pressures on the filling and ejection of a pulsatile pediatric ventricular assist device in an acute animal model.
    Lukic B; Zapanta CM; Khalapyan T; Connell J; Pae WE; Myers JL; Wilson RP; Undar A; Rosenberg G; Weiss WJ
    ASAIO J; 2007; 53(3):379-84. PubMed ID: 17515733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling ventricular function during cardiac assist: does time-varying elastance work?
    Vandenberghe S; Segers P; Steendijk P; Meyns B; Dion RA; Antaki JF; Verdonck P
    ASAIO J; 2006; 52(1):4-8. PubMed ID: 16436883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left ventricle load impedance control by apical VAD can help heart recovery and patient perfusion: a numerical study.
    Colacino FM; Moscato F; Piedimonte F; Arabia M; Danieli GA
    ASAIO J; 2007; 53(3):263-77. PubMed ID: 17515714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow visualization techniques in a mock ventricle supported by a nonpulsatile left ventricular assist device.
    Khalil HA; Metcalfe RW; Kleis SJ; Lee EL; Gilbert NL; Kerr DT; Frazier OH; Cohn WE
    ASAIO J; 2009; 55(4):323-7. PubMed ID: 19512887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical maximal flow of the left ventricle is sensitive to change in ventricular afterload.
    Chang KC
    J Theor Biol; 1998 Oct; 194(3):409-17. PubMed ID: 9778446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG; Lanning CJ; Stoica S; Wang R; Rech BA; Goldberg S; Shandas R
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple electrical model of the circulation to explore design parameters for a skeletal muscle ventricle.
    Voytik SL; Babbs CF; Badylak SF
    J Heart Transplant; 1990; 9(2):160-74. PubMed ID: 2319376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of an artificial left ventricular muscle: an innovative way to actuate blood pumps?
    Van Der Smissen B; Claessens T; Verdonck P; Van Ransbeeck P; Segers P
    Artif Organs; 2009 Jun; 33(6):464-8. PubMed ID: 19473142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parameter-optimized model of cardiovascular-rotary blood pump interactions.
    Lim E; Dokos S; Cloherty SL; Salamonsen RF; Mason DG; Reizes JA; Lovell NH
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):254-66. PubMed ID: 19770086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of Interaction Between Ventricular Assist Device Assistance and Autoregulated Mock Circulation Including Frank-Starling Mechanism and Baroreflex.
    Jansen-Park SH; Mahmood MN; Müller I; Turnhoff LK; Schmitz-Rode T; Steinseifer U; Sonntag SJ
    Artif Organs; 2016 Oct; 40(10):981-991. PubMed ID: 26582749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A fast building and effective hydraulic pediatric mock circulatory system for the evaluation of a left ventricular assist device.
    Huang F; Ruan X; Zou J; Qian W; Fu X
    ASAIO J; 2013; 59(6):575-85. PubMed ID: 24088901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of an adult mock circulation for testing cardiac support devices.
    Pantalos GM; Koenig SC; Gillars KJ; Giridharan GA; Ewert DL
    ASAIO J; 2004; 50(1):37-46. PubMed ID: 14763490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume.
    Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M
    Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A complete mock circulation loop for the evaluation of left, right, and biventricular assist devices.
    Timms D; Hayne M; McNeil K; Galbraith A
    Artif Organs; 2005 Jul; 29(7):564-72. PubMed ID: 15982285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and initial testing of a mock human circulatory loop for left ventricular assist device performance testing.
    Liu Y; Allaire P; Wood H; Olsen D
    Artif Organs; 2005 Apr; 29(4):341-5. PubMed ID: 15787631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid test bench for evaluation of any device related to mechanical cardiac assistance.
    Colacino FM; Arabia M; Danieli GA; Moscato F; Nicosia S; Piedimonte F; Valigi P; Pagnottelli S
    Int J Artif Organs; 2005 Aug; 28(8):817-26. PubMed ID: 16211532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward a new method of analyzing cardiac performance.
    Ripplinger CM; Ewert DL; Koenig SC
    Biomed Sci Instrum; 2001; 37():313-8. PubMed ID: 11347409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.