These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19033772)

  • 1. An extended computational model of the circulatory system for designing ventricular assist devices.
    Hsu PL; Cheng SJ; Saumarez RC; Dawes WN; McMahon RA
    ASAIO J; 2008; 54(6):594-9. PubMed ID: 19033772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A controller for a miniature intra-aortic ventricular assist device.
    Hsu PL; Bruch J; McMahon R
    Artif Organs; 2011 Mar; 35(3):282-7. PubMed ID: 21114678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A pulsatile control algorithm of continuous-flow pump for heart recovery.
    Gao B; Chang Y; Gu K; Zeng Y; Liu Y
    ASAIO J; 2012; 58(4):343-52. PubMed ID: 22576238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical comparison of hemodynamics with atrium to aorta and ventricular apex to aorta VAD support.
    Korakianitis T; Shi Y
    ASAIO J; 2007; 53(5):537-48. PubMed ID: 17885325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and identification of an intra-aorta pump.
    Chang Y; Gao B
    ASAIO J; 2010; 56(6):504-9. PubMed ID: 21245795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Vitro Evaluation of the Dual-Diffuser Design for a Reversible Rotary Intra-Aortic Ventricular Assist Device.
    Wang Y; Smith PA; Timms DL; Hsu PL; McMahon RA
    Artif Organs; 2016 Sep; 40(9):884-93. PubMed ID: 27357189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical and in vitro investigation of a novel mechanical circulatory support device installed in the descending aorta.
    Rezaienia MA; Rahideh A; Alhosseini Hamedani B; Bosak DE; Zustiak S; Korakianitis T
    Artif Organs; 2015 Jun; 39(6):502-13. PubMed ID: 25807855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro comparison of two different mechanical circulatory support devices installed in series and in parallel.
    Rezaienia MA; Rahideh A; Rothman MT; Sell SA; Mitchell K; Korakianitis T
    Artif Organs; 2014 Sep; 38(9):800-9. PubMed ID: 24721023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of Ventricular, Cavo-Pulmonary, and Biventricular Ventricular Assist Devices in Failing Fontan.
    Di Molfetta A; Amodeo A; Fresiello L; Trivella MG; Iacobelli R; Pilati M; Ferrari G
    Artif Organs; 2015 Jul; 39(7):550-8. PubMed ID: 25808201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mathematical model to evaluate control strategies for mechanical circulatory support.
    Cox LG; Loerakker S; Rutten MC; de Mol BA; van de Vosse FN
    Artif Organs; 2009 Aug; 33(8):593-603. PubMed ID: 19558561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ascending aorta outflow graft location and pulsatile ventricular assist provide optimal hemodynamic support in an adult mock circulation.
    Litwak KN; Koenig SC; Cheng RC; Giridharan GA; Gillars KJ; Pantalos GM
    Artif Organs; 2005 Aug; 29(8):629-35. PubMed ID: 16048479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computer model of the pediatric circulatory system for testing pediatric assist devices.
    Giridharan GA; Koenig SC; Mitchell M; Gartner M; Pantalos GM
    ASAIO J; 2007; 53(1):74-81. PubMed ID: 17237652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preservation of native aortic valve flow and full hemodynamic support with the TORVAD using a computational model of the cardiovascular system.
    Gohean JR; George MJ; Chang KW; Larson ER; Pate TD; Kurusz M; Longoria RG; Smalling RW
    ASAIO J; 2015; 61(3):259-65. PubMed ID: 25485562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fault detection in rotary blood pumps using motor speed response.
    Soucy KG; Koenig SC; Sobieski MA; Slaughter MS; Giridharan GA
    ASAIO J; 2013; 59(4):410-9. PubMed ID: 23820281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anatomy and Physiology of Left Ventricular Suction Induced by Rotary Blood Pumps.
    Salamonsen RF; Lim E; Moloney J; Lovell NH; Rosenfeldt FL
    Artif Organs; 2015 Aug; 39(8):681-90. PubMed ID: 26146861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Banding the Right Ventricular Assist Device Outflow Conduit: Is It Really Necessary With Current Devices?
    Lo C; Gregory S; Stevens M; Murphy D; Marasco S
    Artif Organs; 2015 Dec; 39(12):1055-61. PubMed ID: 25994563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of flow within a left ventricle model fully assisted with continuous flow through the aortic valve.
    Yano T; Funayama M; Sudo S; Mitamura Y
    Artif Organs; 2012 Aug; 36(8):714-23. PubMed ID: 22882441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design.
    Callington A; Long Q; Mohite P; Simon A; Mittal TK
    J Thorac Cardiovasc Surg; 2015 Sep; 150(3):696-704. PubMed ID: 26092505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.