These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 19033772)
21. Computational fluid dynamic study of hemodynamic effects on aortic root blood flow of systematically varied left ventricular assist device graft anastomosis design. Callington A; Long Q; Mohite P; Simon A; Mittal TK J Thorac Cardiovasc Surg; 2015 Sep; 150(3):696-704. PubMed ID: 26092505 [TBL] [Abstract][Full Text] [Related]
22. Improved hemodynamics with a novel miniaturized intra-aortic axial flow pump in a porcine model of acute left ventricular dysfunction. Shabari FR; George J; Cuchiara MP; Langsner RJ; Heuring JJ; Cohn WE; Hertzog BA; Delgado R ASAIO J; 2013; 59(3):240-5. PubMed ID: 23644610 [TBL] [Abstract][Full Text] [Related]
23. Mechanical ventilation and thoracic artificial lung assistance during mechanical circulatory support with PUCA pump: in silico study. De Lazzari C; Genuini I; Quatember B; Fedele F Comput Methods Programs Biomed; 2014 Feb; 113(2):642-54. PubMed ID: 24332823 [TBL] [Abstract][Full Text] [Related]
24. The use of a numerical model to simulate the cavo-pulmonary assistance in Fontan circulation: a preliminary verification. Di Molfetta A; Amodeo A; Fresiello L; Filippelli S; Pilati M; Iacobelli R; Adorisio R; Colella D; Ferrari G J Artif Organs; 2016 Jun; 19(2):105-13. PubMed ID: 26545595 [TBL] [Abstract][Full Text] [Related]
25. The effect of aortic valve incompetence on the hemodynamics of a continuous flow ventricular assist device in a mock circulation. Zamarripa Garcia MA; Enriquez LA; Dembitsky W; May-Newman K ASAIO J; 2008; 54(3):237-44. PubMed ID: 18496272 [TBL] [Abstract][Full Text] [Related]
26. Selective reduction of afterload in right heart assist therapy: a mock loop study†. Hsu PL; Hatam N; Unterkofler J; Goetzenich A; McIntyre M; Wong KC; Egger C; Schmitz-Rode T; Autschbach R; Steinseifer U Interact Cardiovasc Thorac Surg; 2014 Jul; 19(1):76-81. PubMed ID: 24670773 [TBL] [Abstract][Full Text] [Related]
27. A simple, economical, and effective portable paediatric mock circulatory system. Vandenberghe S; Shu F; Arnold DK; Antaki JF Proc Inst Mech Eng H; 2011 Jul; 225(7):648-56. PubMed ID: 21870372 [TBL] [Abstract][Full Text] [Related]
28. Hemodynamic simulation study of a novel intra-aorta left ventricular assist device. Xuan Y; Chang Y; Gu K; Gao B ASAIO J; 2012; 58(5):462-9. PubMed ID: 22929899 [TBL] [Abstract][Full Text] [Related]
29. Application of a search algorithm using stochastic behaviors to autonomous control of a ventricular assist device. Ohnuma K; Sumikura H; Homma A; Tsukiya T; Mizuno T; Takewa Y; Tatsumi E Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():290-3. PubMed ID: 25569954 [TBL] [Abstract][Full Text] [Related]
31. Computer simulation of the circulatory system during support with a rotary blood pump. Schima H; Honigschnabel J; Trubel W; Thoma H ASAIO Trans; 1990; 36(3):M252-4. PubMed ID: 2252670 [TBL] [Abstract][Full Text] [Related]
32. In vivo evaluation of the "TinyPump" as a pediatric left ventricular assist device. Kitao T; Ando Y; Yoshikawa M; Kobayashi M; Kimura T; Ohsawa H; Machida S; Yokoyama N; Sakota D; Konno T; Ishihara K; Takatani S Artif Organs; 2011 May; 35(5):543-53. PubMed ID: 21595723 [TBL] [Abstract][Full Text] [Related]
33. Novel techniques of mechanical circulatory support for the right heart and Fontan circulation. Derk G; Laks H; Biniwale R; Patel S; De LaCruz K; Mazor E; Williams R; Valdovinos J; Levi DS; Reardon L; Aboulhosn J Int J Cardiol; 2014 Oct; 176(3):828-32. PubMed ID: 25175520 [TBL] [Abstract][Full Text] [Related]
34. Recent advances in computational methodology for simulation of mechanical circulatory assist devices. Marsden AL; Bazilevs Y; Long CC; Behr M Wiley Interdiscip Rev Syst Biol Med; 2014; 6(2):169-88. PubMed ID: 24449607 [TBL] [Abstract][Full Text] [Related]
35. Continuous-flow pump model study: the effect on pump performance of pump characteristics and cardiovascular conditions. Ferrari G; Kozarski M; Fresiello L; Di Molfetta A; Zieliński K; Górczyńska K; Pałko KJ; Darowski M J Artif Organs; 2013 Jun; 16(2):149-56. PubMed ID: 23463355 [TBL] [Abstract][Full Text] [Related]
36. Acausal Modelling of Advanced-Stage Heart Failure and the Istanbul Heart Ventricular Assist Device Support with Patient Data. Mehmood K; Lazoglu I; Küçükaksu DS Cardiovasc Eng Technol; 2023 Oct; 14(5):726-741. PubMed ID: 37723332 [TBL] [Abstract][Full Text] [Related]
37. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Laumen M; Kaufmann T; Timms D; Schlanstein P; Jansen S; Gregory S; Wong KC; Schmitz-Rode T; Steinseifer U Artif Organs; 2010 Oct; 34(10):798-806. PubMed ID: 20964698 [TBL] [Abstract][Full Text] [Related]
38. A physiological controller for turbodynamic ventricular assist devices based on a measurement of the left ventricular volume. Ochsner G; Amacher R; Wilhelm MJ; Vandenberghe S; Tevaearai H; Plass A; Amstutz A; Falk V; Schmid Daners M Artif Organs; 2014 Jul; 38(7):527-38. PubMed ID: 24256168 [TBL] [Abstract][Full Text] [Related]
39. Left ventricular assist using a jet pump. Rhee K; Blackshear PL ASAIO Trans; 1990; 36(3):M515-8. PubMed ID: 2252738 [TBL] [Abstract][Full Text] [Related]
40. Pulsatile control of rotary blood pumps: Does the modulation waveform matter? Pirbodaghi T; Axiak S; Weber A; Gempp T; Vandenberghe S J Thorac Cardiovasc Surg; 2012 Oct; 144(4):970-7. PubMed ID: 22418246 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]