These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19034437)

  • 1. L-type Ca2+ current in frog tectal recurrent neurons determines the NMDA receptor activation on efferent neuron.
    Baginskas A; Kuras A
    Exp Brain Res; 2009 Mar; 193(4):509-17. PubMed ID: 19034437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscarinic inhibition of recurrent glutamatergic excitation in frog tectum column prevents NMDA receptor activation on efferent neuron.
    Baginskas A; Kuras A
    Exp Brain Res; 2011 Feb; 208(3):323-34. PubMed ID: 21082312
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single retinal changing contrast (third) detector elicits NMDA receptor response and higher activity level of frog tectum neuron network.
    Kuras A; Baginskas A; Batuleviciene V; Lamanauskas N
    Exp Brain Res; 2007 May; 179(2):209-17. PubMed ID: 17136527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-NMDA and NMDA receptors are involved in suprathreshold excitation of network of frog tectal neurons by a single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Neurosci Res; 2006 Apr; 54(4):328-37. PubMed ID: 16446000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single retinal ganglion cell evokes the activation of L-type Ca(2+)-mediated slow inward current in frog tectal pear-shaped neurons.
    Baginskas A; Kuras A
    Neurosci Res; 2008 Apr; 60(4):412-21. PubMed ID: 18243388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suprathreshold excitation of frog tectal neurons by short spike trains of single retinal ganglion cell.
    Kuras A; Baginskas A; Batuleviciene V
    Exp Brain Res; 2004 Dec; 159(4):509-18. PubMed ID: 15221171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of dendritic L-type calcium current by memantine in frog tectum.
    Baginskas A; Kuras A; Grigaliūnas A
    Medicina (Kaunas); 2013; 49(9):409-14. PubMed ID: 24589577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal co-mediator acetylcholine evokes muscarinic inhibition of recurrent excitation in frog tectum column.
    Baginskas A; Kuras A
    Neurosci Lett; 2016 Aug; 629():137-142. PubMed ID: 27394688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visual Stimuli Evoked Action Potentials Trigger Rapidly Propagating Dendritic Calcium Transients in the Frog Optic Tectum Layer 6 Neurons.
    Svirskis G; Baranauskas G; Svirskiene N; Tkatch T
    PLoS One; 2015; 10(9):e0139472. PubMed ID: 26414356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phasic nicotinic potentiation of frog retinotectal transmission facilitates eliciting of higher activity level of the tectum column.
    Baginskas A; Kuraite V; Kuras A
    Neurosci Lett; 2013 Oct; 554():1-5. PubMed ID: 24012815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. L-type calcium channels and NMDA receptors: a determinant duo for short-term nociceptive plasticity.
    Fossat P; Sibon I; Le Masson G; Landry M; Nagy F
    Eur J Neurosci; 2007 Jan; 25(1):127-35. PubMed ID: 17241274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suprathreshold excitation of network of frog tectal neurons by discharging of single retina moving-edge detector.
    Kuras A; Baginskas A; Batuleviciene V
    Medicina (Kaunas); 2005; 41(11):949-56. PubMed ID: 16333218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Localized contribution of N-methyl-D-aspartate receptors to synaptic input-induced rise of calcium in apical dendrites of layer II/III neurons in rat visual cortex.
    Yasuda H; Kinoshita S; Tsumoto T
    Neuroscience; 1998 Aug; 85(4):1011-24. PubMed ID: 9681942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calcium influx through NMDA receptors, chronic receptor inhibition by ethanol and 2-amino-5-phosponopentanoic acid, and receptor protein expression.
    Chen X; Moore-Nichols D; Nguyen H; Michaelis EK
    J Neurochem; 1999 May; 72(5):1969-80. PubMed ID: 10217274
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brevetoxin-induced autocrine excitotoxicity is associated with manifold routes of Ca2+ influx.
    Berman FW; Murray TF
    J Neurochem; 2000 Apr; 74(4):1443-51. PubMed ID: 10737600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Corticostriatal paired-pulse potentiation produced by voltage-dependent activation of NMDA receptors and L-type Ca(2+) channels.
    Akopian G; Walsh JP
    J Neurophysiol; 2002 Jan; 87(1):157-65. PubMed ID: 11784738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contributions of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum.
    Hickmott PW; Constantine-Paton M
    J Neurosci; 1993 Oct; 13(10):4339-53. PubMed ID: 7692012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional role of NMDA autoreceptors in olfactory mitral cells.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2000 Jul; 84(1):39-50. PubMed ID: 10899181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular mechanisms underlying the rhythmic bursts induced by NMDA microiontophoresis at the apical dendrites of CA1 pyramidal neurons.
    Bonansco C; Buño W
    Hippocampus; 2003; 13(1):150-63. PubMed ID: 12625465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow afterhyperpolarization governs the development of NMDA receptor-dependent afterdepolarization in CA1 pyramidal neurons during synaptic stimulation.
    Wu WW; Chan CS; Disterhoft JF
    J Neurophysiol; 2004 Oct; 92(4):2346-56. PubMed ID: 15190096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.