These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19034494)

  • 21. A leucine zipper motif essential for gating of hyperpolarization-activated channels.
    Wemhöner K; Silbernagel N; Marzian S; Netter MF; Rinné S; Stansfeld PJ; Decher N
    J Biol Chem; 2012 Nov; 287(48):40150-60. PubMed ID: 23048023
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensitivity of HCN channel deactivation to cAMP is amplified by an S4 mutation combined with activation mode shift.
    Wicks NL; Chan KS; Madden Z; Santoro B; Young EC
    Pflugers Arch; 2009 Sep; 458(5):877-89. PubMed ID: 19544068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Slow conformational changes of the voltage sensor during the mode shift in hyperpolarization-activated cyclic-nucleotide-gated channels.
    Bruening-Wright A; Larsson HP
    J Neurosci; 2007 Jan; 27(2):270-8. PubMed ID: 17215386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capturing distinct KCNQ2 channel resting states by metal ion bridges in the voltage-sensor domain.
    Gourgy-Hacohen O; Kornilov P; Pittel I; Peretz A; Attali B; Paas Y
    J Gen Physiol; 2014 Dec; 144(6):513-27. PubMed ID: 25385787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual Regulation of Voltage-Sensitive Ion Channels by PIP(2).
    Rodríguez-Menchaca AA; Adney SK; Zhou L; Logothetis DE
    Front Pharmacol; 2012; 3():170. PubMed ID: 23055973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage-dependent gating of KCNH potassium channels lacking a covalent link between voltage-sensing and pore domains.
    Lörinczi É; Gómez-Posada JC; de la Peña P; Tomczak AP; Fernández-Trillo J; Leipscher U; Stühmer W; Barros F; Pardo LA
    Nat Commun; 2015 Mar; 6():6672. PubMed ID: 25818916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural compatibility between the putative voltage sensor of voltage-gated K+ channels and the prokaryotic KcsA channel.
    Caprini M; Ferroni S; Planells-Cases R; Rueda J; Rapisarda C; Ferrer-Montiel A; Montal M
    J Biol Chem; 2001 Jun; 276(24):21070-6. PubMed ID: 11274182
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Atomic constraints between the voltage sensor and the pore domain in a voltage-gated K+ channel of known structure.
    Lewis A; Jogini V; Blachowicz L; Lainé M; Roux B
    J Gen Physiol; 2008 Jun; 131(6):549-61. PubMed ID: 18504314
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biophysical analysis of an HCN1 epilepsy variant suggests a critical role for S5 helix Met-305 in voltage sensor to pore domain coupling.
    Hung A; Forster IC; Mckenzie CE; Berecki G; Petrou S; Kathirvel A; Soh MS; Reid CA
    Prog Biophys Mol Biol; 2021 Nov; 166():156-172. PubMed ID: 34298002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic relationship between the voltage sensor and the activation gate in spHCN channels.
    Bruening-Wright A; Elinder F; Larsson HP
    J Gen Physiol; 2007 Jul; 130(1):71-81. PubMed ID: 17591986
    [TBL] [Abstract][Full Text] [Related]  

  • 31. S4-S5 linker movement during activation and inactivation in voltage-gated K
    Kalstrup T; Blunck R
    Proc Natl Acad Sci U S A; 2018 Jul; 115(29):E6751-E6759. PubMed ID: 29959207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Loose Coupling between the Voltage Sensor and the Activation Gate in Mammalian HCN Channels Suggests a Gating Mechanism.
    Wu X; Cunningham KP; Bruening-Wright A; Pandey S; Larsson HP
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38673895
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional characterization of Kv11.1 (hERG) potassium channels split in the voltage-sensing domain.
    de la Peña P; Domínguez P; Barros F
    Pflugers Arch; 2018 Jul; 470(7):1069-1085. PubMed ID: 29572566
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reversal of rectification and alteration of selectivity and pharmacology in a mammalian Kv1.1 potassium channel by deletion of domains S1 to S4.
    Tytgat J; Vereecke J; Carmeliet E
    J Physiol; 1994 Nov; 481 ( Pt 1)(Pt 1):7-13. PubMed ID: 7853250
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage Sensor Movements during Hyperpolarization in the HCN Channel.
    Lee CH; MacKinnon R
    Cell; 2019 Dec; 179(7):1582-1589.e7. PubMed ID: 31787376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bipolar switching by HCN voltage sensor underlies hyperpolarization activation.
    Cowgill J; Klenchin VA; Alvarez-Baron C; Tewari D; Blair A; Chanda B
    Proc Natl Acad Sci U S A; 2019 Jan; 116(2):670-678. PubMed ID: 30587580
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Charge movement in gating-locked HCN channels reveals weak coupling of voltage sensors and gate.
    Ryu S; Yellen G
    J Gen Physiol; 2012 Nov; 140(5):469-79. PubMed ID: 23071265
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.
    Cheng L; Sanguinetti MC
    Mol Pharmacol; 2009 May; 75(5):1210-21. PubMed ID: 19218366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rapid outer pore movements after opening in a KV1 potassium channel are revealed by TMRM fluorescence from the S3-S4 linker, and modulated by extracellular potassium.
    Vaid M; Horne A; Claydon T; Fedida D
    Channels (Austin); 2009; 3(1):3-5. PubMed ID: 19077547
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels.
    Nieves-Cordones M; Gaillard I
    Plant Signal Behav; 2014; 9(10):e972892. PubMed ID: 25482770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.