These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 19034544)

  • 1. Activity-dependent neuronal cell migration induced by electrical stimulation.
    Jeong SH; Jun SB; Song JK; Kim SJ
    Med Biol Eng Comput; 2009 Jan; 47(1):93-9. PubMed ID: 19034544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical stimulation-induced cell clustering in cultured neural networks.
    Jun SB; Hynd MR; Smith KL; Song JK; Turner JN; Shain W; Kim SJ
    Med Biol Eng Comput; 2007 Nov; 45(11):1015-21. PubMed ID: 17684784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal network structuring induces greater neuronal activity through enhanced astroglial development.
    Chang JC; Brewer GJ; Wheeler BC
    J Neural Eng; 2006 Sep; 3(3):217-26. PubMed ID: 16921205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polydopamine-doped conductive polymer microelectrodes for neural recording and stimulation.
    Kim R; Nam Y
    J Neurosci Methods; 2019 Oct; 326():108369. PubMed ID: 31326604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new indirect co-culture set up of mouse hippocampal neurons and cortical astrocytes on microelectrode arrays.
    Geissler M; Faissner A
    J Neurosci Methods; 2012 Mar; 204(2):262-72. PubMed ID: 22182586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adult neural progenitor cells reactivate superbursting in mature neural networks.
    Stephens CL; Toda H; Palmer TD; DeMarse TB; Ormerod BK
    Exp Neurol; 2012 Mar; 234(1):20-30. PubMed ID: 22198136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical monitoring of neural networks evoked by focal electrical stimulation on microelectrode arrays using FM dyes.
    Jun SB; Smith KL; Shain W; Dowell-Mesfin NM; Kim SJ; Hynd MR
    Med Biol Eng Comput; 2010 Sep; 48(9):933-40. PubMed ID: 20490941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A CMOS-based microelectrode array for interaction with neuronal cultures.
    Hafizovic S; Heer F; Ugniwenko T; Frey U; Blau A; Ziegler C; Hierlemann A
    J Neurosci Methods; 2007 Aug; 164(1):93-106. PubMed ID: 17540452
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of a Human Neuronal Network Assessment System by Using a Human Neuron/Astrocyte Co-Culture Derived from Fetal Neural Stem/Progenitor Cells.
    Fukushima K; Miura Y; Sawada K; Yamazaki K; Ito M
    J Biomol Screen; 2016 Jan; 21(1):54-64. PubMed ID: 26482803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbenoxolone blockade of neuronal network activity in culture is not mediated by an action on gap junctions.
    Rouach N; Segal M; Koulakoff A; Giaume C; Avignone E
    J Physiol; 2003 Dec; 553(Pt 3):729-45. PubMed ID: 14514879
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.
    Nakayama K; Kiyosue K; Taguchi T
    J Neurosci; 2005 Apr; 25(16):4040-51. PubMed ID: 15843606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracellular recordings from patterned neuronal networks using planar microelectrode arrays.
    James CD; Spence AJ; Dowell-Mesfin NM; Hussain RJ; Smith KL; Craighead HG; Isaacson MS; Shain W; Turner JN
    IEEE Trans Biomed Eng; 2004 Sep; 51(9):1640-8. PubMed ID: 15376512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human embryonic stem cell-derived neuronal cells form spontaneously active neuronal networks in vitro.
    Heikkilä TJ; Ylä-Outinen L; Tanskanen JM; Lappalainen RS; Skottman H; Suuronen R; Mikkonen JE; Hyttinen JA; Narkilahti S
    Exp Neurol; 2009 Jul; 218(1):109-16. PubMed ID: 19393237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Separation of individual neurons using dielectrophoretic alternative current fields.
    Prasad S; Zhang X; Yang M; Ni Y; Parpura V; Ozkan CS; Ozkan M
    J Neurosci Methods; 2004 May; 135(1-2):79-88. PubMed ID: 15020092
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors.
    Elmariah SB; Oh EJ; Hughes EG; Balice-Gordon RJ
    J Neurosci; 2005 Apr; 25(14):3638-50. PubMed ID: 15814795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-frequency stimulation enhances burst activity in cortical cultures during development.
    Bologna LL; Nieus T; Tedesco M; Chiappalone M; Benfenati F; Martinoia S
    Neuroscience; 2010 Feb; 165(3):692-704. PubMed ID: 19922773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Early onset of electrical activity in developing neurons cultured on carbon nanotube immobilized microelectrodes.
    Khraiche ML; Jackson N; Muthuswamy J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():777-80. PubMed ID: 19964241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of in vitro neural functional connectivity on a neurofluidic device.
    Shen X; Wu J; Wang Z; Chen T
    Electrophoresis; 2019 Nov; 40(22):2996-3004. PubMed ID: 31556965
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ion conducting polymer microelectrodes for interfacing with neural networks.
    Nyberg T; Shimada A; Torimitsu K
    J Neurosci Methods; 2007 Feb; 160(1):16-25. PubMed ID: 17000006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microelectrode array-based system for neuropharmacological applications with cortical neurons cultured in vitro.
    Xiang G; Pan L; Huang L; Yu Z; Song X; Cheng J; Xing W; Zhou Y
    Biosens Bioelectron; 2007 May; 22(11):2478-84. PubMed ID: 17071071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.