BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19034921)

  • 1. Quantitative measurement of multifunctional quantum dot binding to cellular targets using flow cytometry.
    Smith RA; Giorgio TD
    Cytometry A; 2009 May; 75(5):465-74. PubMed ID: 19034921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum dots for quantitative flow cytometry.
    Buranda T; Wu Y; Sklar LA
    Methods Mol Biol; 2011; 699():67-84. PubMed ID: 21116979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dots thermal stability improves simultaneous phenotype-specific telomere length measurement by FISH-flow cytometry.
    Kapoor V; Hakim FT; Rehman N; Gress RE; Telford WG
    J Immunol Methods; 2009 May; 344(1):6-14. PubMed ID: 19268672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.
    Wu Y; Campos SK; Lopez GP; Ozbun MA; Sklar LA; Buranda T
    Anal Biochem; 2007 May; 364(2):180-92. PubMed ID: 17397793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted quantum dots fluorescence probes functionalized with aptamer and peptide for transferrin receptor on tumor cells.
    Zhang MZ; Yu RN; Chen J; Ma ZY; Zhao YD
    Nanotechnology; 2012 Dec; 23(48):485104. PubMed ID: 23138109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum Dots in an Amphiphilic Polyethyleneimine Derivative Platform for Cellular Labeling, Targeting, Gene Delivery, and Ratiometric Oxygen Sensing.
    Park J; Lee J; Kwag J; Baek Y; Kim B; Yoon CJ; Bok S; Cho SH; Kim KH; Ahn GO; Kim S
    ACS Nano; 2015 Jun; 9(6):6511-21. PubMed ID: 26057729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of CdTe/CdSe quantum dots-transferrin fluorescent probes for cellular labeling.
    Guan LY; Li YQ; Lin S; Zhang MZ; Chen J; Ma ZY; Zhao YD
    Anal Chim Acta; 2012 Sep; 741():86-92. PubMed ID: 22840708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging using quantum-dot-conjugated probes.
    S Lidke D; Nagy P; J Arndt-Jovin D
    Curr Protoc Cell Biol; 2007 Sep; Chapter 25():Unit 25.1. PubMed ID: 18228511
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum dots in flow cytometry.
    Abrams B; Dubrovsky T
    Methods Mol Biol; 2007; 374():185-203. PubMed ID: 17237540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folate receptor-targeted quantum dot liposomes as fluorescence probes.
    Yang C; Ding N; Xu Y; Qu X; Zhang J; Zhao C; Hong L; Lu Y; Xiang G
    J Drug Target; 2009 Aug; 17(7):502-11. PubMed ID: 19489689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gold nanoparticle-quantum dot-polystyrene microspheres as fluorescence resonance energy transfer probes for bioassays.
    Quach AD; Crivat G; Tarr MA; Rosenzweig Z
    J Am Chem Soc; 2011 Feb; 133(7):2028-30. PubMed ID: 21280652
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Dots as alternatives to organic fluorophores for Cryptosporidium detection using conventional flow cytometry and specific monoclonal antibodies: lessons learned.
    Ferrari BC; Bergquist PL
    Cytometry A; 2007 Apr; 71(4):265-71. PubMed ID: 17279568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Applications of fluorescent semiconductor nanocrystals in microscopy and cytometry].
    Vorob'ev IA; Rafalovskaia-Orlovskaia EP; Gladkikh AA; Potashnikova DM; Barteneva NS
    Tsitologiia; 2011; 53(5):392-403. PubMed ID: 21786682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tracking the down-regulation of folate receptor-α in cancer cells through target specific delivery of quantum dots coupled with antisense oligonucleotide and targeted peptide.
    Zhang MZ; Yu Y; Yu RN; Wan M; Zhang RY; Zhao YD
    Small; 2013 Dec; 9(24):4183-93. PubMed ID: 23828664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of targeted monovalent quantum dots by steric exclusion.
    Farlow J; Seo D; Broaders KE; Taylor MJ; Gartner ZJ; Jun YW
    Nat Methods; 2013 Dec; 10(12):1203-5. PubMed ID: 24122039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Novel Fluorescent Quantum Dot Probe for the Rapid Diagnostic High Contrast Imaging of Tumor in Mice.
    Vibin M; Vinayakan R; Fernandez FB; John A; Abraham A
    J Fluoresc; 2017 Mar; 27(2):669-677. PubMed ID: 27921209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible and near infrared fluorescence spectral flow cytometry.
    Nolan JP; Condello D; Duggan E; Naivar M; Novo D
    Cytometry A; 2013 Mar; 83(3):253-64. PubMed ID: 23225549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum dot technology in flow cytometry.
    Chattopadhyay PK
    Methods Cell Biol; 2011; 102():463-77. PubMed ID: 21704850
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunofluorescence detection with quantum dot bioconjugates for hepatoma in vivo.
    Yu X; Chen L; Li K; Li Y; Xiao S; Luo X; Liu J; Zhou L; Deng Y; Pang D; Wang Q
    J Biomed Opt; 2007; 12(1):014008. PubMed ID: 17343483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity of quantum dots used for in vitro cellular labeling: role of QD surface ligand, delivery modality, cell type, and direct comparison to organic fluorophores.
    Bradburne CE; Delehanty JB; Boeneman Gemmill K; Mei BC; Mattoussi H; Susumu K; Blanco-Canosa JB; Dawson PE; Medintz IL
    Bioconjug Chem; 2013 Sep; 24(9):1570-83. PubMed ID: 23879393
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.