BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19035)

  • 1. Substrate kinetic isotope effects in dehydrogenase coupled active transport in membrane vesicles of Escherichia coli.
    Kaczorowski GJ; Cheung YF; Walsh C
    Biochemistry; 1977 Jun; 16(12):2619-28. PubMed ID: 19035
    [No Abstract]   [Full Text] [Related]  

  • 2. Membrane potential and active transport in membrane vesicles from Escherichia coli.
    Schuldiner S; Kaback HR
    Biochemistry; 1975 Dec; 14(25):5451-61. PubMed ID: 172125
    [No Abstract]   [Full Text] [Related]  

  • 3. Membrane potential and neutral amino acid transport in plasma membrane vesicles from Simian virus 40 transformed mouse fibroblasts.
    Lever JE
    Biochemistry; 1977 Sep; 16(19):4328-34. PubMed ID: 197993
    [No Abstract]   [Full Text] [Related]  

  • 4. Reconstitution of Escherichia coli membrane vesicles with D-amino acid dehydrogenase.
    Olsiewski PJ; Kaczorowski GJ; Walsh CT; Kaback HR
    Biochemistry; 1981 Oct; 20(21):6272-9. PubMed ID: 6118175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of alanine racemase and D-alanine dehydrogenase to active transport of amino acids in Escherichia coli B membrane vesicles.
    Kaczorowski G; Shaw L; F-entes M; Walsh C
    J Biol Chem; 1975 Apr; 250(8):2855-65. PubMed ID: 1091641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ecf mutation in Escherichia coli pleiotropically affecting energy coupling in active transport but not generation or maintenance of membrane potential.
    Hong JS
    J Biol Chem; 1977 Dec; 252(23):8582-8. PubMed ID: 21876
    [No Abstract]   [Full Text] [Related]  

  • 7. The localization of glycerol-3-phosphate dehydrogenase in Escherichia coli.
    Weiner JH
    J Membr Biol; 1974; 15(1):1-14. PubMed ID: 4600804
    [No Abstract]   [Full Text] [Related]  

  • 8. Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a pseudomonas species.
    Matin A; Konings WN
    Eur J Biochem; 1973 Apr; 34(1):58-67. PubMed ID: 4349657
    [No Abstract]   [Full Text] [Related]  

  • 9. Active transport in Escherichia coli B membrane vesicles. Differential inactivating effects from the enzymatic oxidation of beta-chloro-L-alanine and beta-chloro-D-alanine.
    Kaczorowski G; Shaw L; Laura R; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8921-30. PubMed ID: 1104610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of active transport in isolated membrane vesicles. I. The site of energy coupling between D-lactic dehydrogenase and beta-galactoside transport in Escherichia coli membrane vesicles.
    Barnes EM; Kaback HR
    J Biol Chem; 1971 Sep; 246(17):5518-22. PubMed ID: 4330922
    [No Abstract]   [Full Text] [Related]  

  • 11. Transport of succinate in Escherichia coli. III. Biochemical and genetic studies of the mechanism of transport in membrane vesicles.
    Lo TC; Rayman MK; Sanwal BD
    Can J Biochem; 1974 Oct; 52(10):854-66. PubMed ID: 4138960
    [No Abstract]   [Full Text] [Related]  

  • 12. Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli.
    Stroobant P; Kaback HR
    Proc Natl Acad Sci U S A; 1975 Oct; 72(10):3970-4. PubMed ID: 672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Limited proteolysis and X-ray crystallography reveal the origin of substrate specificity and of the rate-limiting product release during oxidation of D-amino acids catalyzed by mammalian D-amino acid oxidase.
    Vanoni MA; Cosma A; Mazzeo D; Mattevi A; Todone F; Curti B
    Biochemistry; 1997 May; 36(19):5624-32. PubMed ID: 9153402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colicin V-treated Escherichia coli does not generate membrane potential.
    Yang CC; Konisky J
    J Bacteriol; 1984 May; 158(2):757-9. PubMed ID: 6373733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of sugars and amino acids in bacteria. XV. Comparative studies on the effects of various energy poisons on the oxidative and phosphorylating activities and energy coupling reactions for the active transport systems for amino acids in E. coli.
    Anraku Y; Kin E; Tanaka Y
    J Biochem; 1975 Jul; 78(1):165-79. PubMed ID: 1104599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of sugars and amino acids in bacteria. XIV. Preferential inhibition of oxidase activities and active transport reactions for amino acids by azidebenzenes.
    Kin E; Anraku Y
    J Biochem; 1975 Jul; 78(1):159-63. PubMed ID: 127788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling of energy to active transport of amino acids in Escherichia coli.
    Simoni RD; Shallenberger MK
    Proc Natl Acad Sci U S A; 1972 Sep; 69(9):2663-7. PubMed ID: 4341704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active transport in Excherichia coli B membrane vesicles. Irreversible uncoupling by chloropyruvate.
    Kaczorowski G; Walsh C
    J Biol Chem; 1975 Dec; 250(23):8931-7. PubMed ID: 1104611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-linked and energy-independent transhydrogenase activities in Escherichia coli vesicles.
    Houghton RL; Fisher RJ; Sanadi DR
    Biochim Biophys Acta; 1975 Jul; 396(1):17-23. PubMed ID: 167848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M
    Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.