BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 19035651)

  • 1. QCM-D and reflectometry instrument: applications to supported lipid structures and their biomolecular interactions.
    Edvardsson M; Svedhem S; Wang G; Richter R; Rodahl M; Kasemo B
    Anal Chem; 2009 Jan; 81(1):349-61. PubMed ID: 19035651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous surface plasmon resonance and quartz crystal microbalance with dissipation monitoring measurements of biomolecular adsorption events involving structural transformations and variations in coupled water.
    Reimhult E; Larsson C; Kasemo B; Höök F
    Anal Chem; 2004 Dec; 76(24):7211-20. PubMed ID: 15595862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time QCM-D monitoring of electrostatically driven lipid transfer between two lipid bilayer membranes.
    Wikström A; Svedhem S; Sivignon M; Kasemo B
    J Phys Chem B; 2008 Nov; 112(44):14069-74. PubMed ID: 18850739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A combined reflectometry and quartz crystal microbalance with dissipation setup for surface interaction studies.
    Wang G; Rodahl M; Edvardsson M; Svedhem S; Ohlsson G; Höök F; Kasemo B
    Rev Sci Instrum; 2008 Jul; 79(7):075107. PubMed ID: 18681734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined nanoplasmonic and electrodeless quartz crystal microbalance setup.
    Larsson EM; Edvardsson ME; Langhammer C; Zorić I; Kasemo B
    Rev Sci Instrum; 2009 Dec; 80(12):125105. PubMed ID: 20059168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles.
    Kunze A; Svedhem S; Kasemo B
    Langmuir; 2009 May; 25(9):5146-58. PubMed ID: 19326873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alpha-helical peptide-induced vesicle rupture revealing new insight into the vesicle fusion process as monitored in situ by quartz crystal microbalance-dissipation and reflectometry.
    Cho NJ; Wang G; Edvardsson M; Glenn JS; Hook F; Frank CW
    Anal Chem; 2009 Jun; 81(12):4752-61. PubMed ID: 19459601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solvation effects in the quartz crystal microbalance with dissipation monitoring response to biomolecular adsorption. A phenomenological approach.
    Bingen P; Wang G; Steinmetz NF; Rodahl M; Richter RP
    Anal Chem; 2008 Dec; 80(23):8880-90. PubMed ID: 19551969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodeless QCM-D for lipid bilayer applications.
    Kunze A; Zäch M; Svedhem S; Kasemo B
    Biosens Bioelectron; 2011 Jan; 26(5):1833-8. PubMed ID: 20153163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined QCM-D and EIS study of supported lipid bilayer formation and interaction with pore-forming peptides.
    Briand E; Zäch M; Svedhem S; Kasemo B; Petronis S
    Analyst; 2010 Feb; 135(2):343-50. PubMed ID: 20098769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous nanoplasmonic and quartz crystal microbalance sensing: analysis of biomolecular conformational changes and quantification of the bound molecular mass.
    Jonsson MP; Jönsson P; Höök F
    Anal Chem; 2008 Nov; 80(21):7988-95. PubMed ID: 18834149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A dual-frequency QCM-D setup operating at elevated oscillation amplitudes.
    Edvardsson M; Rodahl M; Kasemo B; Höök F
    Anal Chem; 2005 Aug; 77(15):4918-26. PubMed ID: 16053305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ preparation and modification of supported lipid layers by lipid transfer from vesicles studied by QCM-D and TOF-SIMS.
    Kunze A; Sjövall P; Kasemo B; Svedhem S
    J Am Chem Soc; 2009 Feb; 131(7):2450-1. PubMed ID: 19178275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotin-containing phospholipid vesicle layer formed on self-assembled monolayer of a saccharide-terminated alkyl disulfide for surface plasmon resonance biosensing.
    Ishizuka-Katsura Y; Wazawa T; Ban T; Morigaki K; Aoyama S
    J Biosci Bioeng; 2008 May; 105(5):527-35. PubMed ID: 18558345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative analysis of tethered vesicle assemblies by quartz crystal microbalance with dissipation monitoring: Binding dynamics and bound water content.
    Patel AR; Frank CW
    Langmuir; 2006 Aug; 22(18):7587-99. PubMed ID: 16922537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quartz crystal microbalance-with dissipation monitoring (QCM-D) for real time measurements of blood coagulation density and immune complement activation on artificial surfaces.
    Andersson M; Andersson J; Sellborn A; Berglin M; Nilsson B; Elwing H
    Biosens Bioelectron; 2005 Jul; 21(1):79-86. PubMed ID: 15967354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of supported lipid bilayers at surfaces with controlled curvatures: influence of lipid charge.
    Sundh M; Svedhem S; Sutherland DS
    J Phys Chem B; 2011 Jun; 115(24):7838-48. PubMed ID: 21630649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of surface plasmon resonance spectroscopy and quartz crystal microbalance techniques for studying DNA assembly and hybridization.
    Su X; Wu YJ; Knoll W
    Biosens Bioelectron; 2005 Nov; 21(5):719-26. PubMed ID: 16242610
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization and application of a surface modification designed for QCM-D studies of biotinylated biomolecules.
    Nilebäck E; Feuz L; Uddenberg H; Valiokas R; Svedhem S
    Biosens Bioelectron; 2011 Oct; 28(1):407-13. PubMed ID: 21852105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.