These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 19035796)

  • 1. Unobtrusive measurement of indoor energy expenditure using an infrared sensor-based activity monitoring system.
    Hwang B; Han J; Choi JM; Park KS
    Telemed J E Health; 2008 Nov; 14(9):881-8. PubMed ID: 19035796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive validity of three ActiGraph energy expenditure equations for children.
    Trost SG; Way R; Okely AD
    Med Sci Sports Exerc; 2006 Feb; 38(2):380-7. PubMed ID: 16531910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning.
    Altini M; Penders J; Vullers R; Amft O
    IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N; Browning RC; Sazonov E
    Med Sci Sports Exerc; 2011 Jul; 43(7):1312-21. PubMed ID: 21131868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the ActiGraph accelerometer and Bouchard diary to estimate energy expenditure in Spanish adolescents.
    Martínez-Gómez D; Puertollano MA; Wärnberg J; Calabro MA; Welk GJ; Sjöström M; Veiga OL; Marcos A
    Nutr Hosp; 2009; 24(6):701-10. PubMed ID: 20049374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel method for using accelerometer data to predict energy expenditure.
    Crouter SE; Clowers KG; Bassett DR
    J Appl Physiol (1985); 2006 Apr; 100(4):1324-31. PubMed ID: 16322367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting Chinese children and youth's energy expenditure using ActiGraph accelerometers: a calibration and cross-validation study.
    Zhu Z; Chen P; Zhuang J
    Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S56-63. PubMed ID: 24527567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of the IDEEA™ activity monitor for estimating energy expenditure.
    Whybrow S; Ritz P; Horgan GW; Stubbs RJ
    Br J Nutr; 2013 Jan; 109(1):173-83. PubMed ID: 22464547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of energy expenditure in a whole body indirect calorimeter at both low and high levels of physical activity.
    de Jonge L; Nguyen T; Smith SR; Zachwieja JJ; Roy HJ; Bray GA
    Int J Obes Relat Metab Disord; 2001 Jul; 25(7):929-34. PubMed ID: 11443488
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting free-living energy expenditure using a miniaturized ear-worn sensor: an evaluation against doubly labeled water.
    Bouarfa L; Atallah L; Kwasnicki RM; Pettitt C; Frost G; Yang GZ
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):566-75. PubMed ID: 24108707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accelerometer prediction of energy expenditure: vector magnitude versus vertical axis.
    Howe CA; Staudenmayer JW; Freedson PS
    Med Sci Sports Exerc; 2009 Dec; 41(12):2199-206. PubMed ID: 19915498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy expenditure estimation during normal ambulation using triaxial accelerometry and barometric pressure.
    Wang J; Redmond SJ; Voleno M; Narayanan MR; Wang N; Cerutti S; Lovell NH
    Physiol Meas; 2012 Nov; 33(11):1811-30. PubMed ID: 23110944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of the portable VmaxST system for oxygen-uptake measurement.
    Brehm MA; Harlaar J; Groepenhof H
    Gait Posture; 2004 Aug; 20(1):67-73. PubMed ID: 15196523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting energy expenditure through hand rim propulsion power output in individuals who use wheelchairs.
    Conger SA; Scott SN; Bassett DR
    Br J Sports Med; 2014 Jul; 48(13):1048-53. PubMed ID: 24825852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of passive infrared sensors for monitoring occupancy pattern.
    Kaushik AR; Celler BG
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():5257-60. PubMed ID: 17945888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting energy expenditure of manual wheelchair users with spinal cord injury using a multisensor-based activity monitor.
    Hiremath SV; Ding D; Farringdon J; Cooper RA
    Arch Phys Med Rehabil; 2012 Nov; 93(11):1937-43. PubMed ID: 22609119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury.
    Hiremath SV; Ding D; Farringdon J; Vyas N; Cooper RA
    Spinal Cord; 2013 Sep; 51(9):705-9. PubMed ID: 23689386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Which indicators for measuring the daily physical activity? An overview on the challenges and technology limits for Telehealth applications.
    Tagliente I; Solvoll T; Trieste L; De Cecco CN; Murgia F; Bella S
    Technol Health Care; 2016 Sep; 24(5):665-72. PubMed ID: 27198463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparing metabolic energy expenditure estimation using wearable multi-sensor network and single accelerometer.
    Dong B; Biswas S; Montoye A; Pfeiffer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():2866-9. PubMed ID: 24110325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a multi-sensor armband during free-living activity in adults with cystic fibrosis.
    Cox NS; Alison JA; Button BM; Wilson JW; Morton JM; Dowman LM; Holland AE
    J Cyst Fibros; 2014 May; 13(3):347-50. PubMed ID: 24374296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.