These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1903628)

  • 1. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer.
    Aelion CM; Bradley PM
    Appl Environ Microbiol; 1991 Jan; 57(1):57-63. PubMed ID: 1903628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic bioremediation in a solvent-contaminated alluvial groundwater.
    Williams RA; Shuttle KA; Kunkler JL; Madsen EL; Hooper SW
    J Ind Microbiol Biotechnol; 1997; 18(2-3):177-88. PubMed ID: 9134765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation potential of MTBE in a fractured chalk aquifer under aerobic conditions in long-term uncontaminated and contaminated aquifer microcosms.
    Shah NW; Thornton SF; Bottrell SH; Spence MJ
    J Contam Hydrol; 2009 Jan; 103(3-4):119-33. PubMed ID: 19008014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aerobic biodegradation of vinyl chloride in groundwater samples.
    Davis JW; Carpenter CL
    Appl Environ Microbiol; 1990 Dec; 56(12):3878-80. PubMed ID: 2128014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial community composition during anaerobic mineralization of tert-butyl alcohol (TBA) in fuel-contaminated aquifer material.
    Wei N; Finneran KT
    Environ Sci Technol; 2011 Apr; 45(7):3012-8. PubMed ID: 21384909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Partitioning microbial respiration between jet fuel and native organic matter in an organic-rich long time-contaminated aquifer.
    Bugna GC; Chanton JP; Stauffer TB; MacIntyre WG; Libelo EL
    Chemosphere; 2005 Jul; 60(2):177-87. PubMed ID: 15914237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biodegradation of atrazine in surface soils and subsurface sediments collected from an agricultural research farm.
    Radosevich M; Traina SJ; Tuovinen OH
    Biodegradation; 1996 Apr; 7(2):137-49. PubMed ID: 8882806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Denitrification in presence of acetate and glucose for bioremediation of nitrate-contaminated groundwater.
    Calderer M; Gibert O; Martí V; Rovira M; de Pablo J; Jordana S; Duro L; Guimerà J; Bruno J
    Environ Technol; 2010 Jun; 31(7):799-814. PubMed ID: 20586242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolite formation and toxicity measurements in evaluating bioremediation of a jet-fuel-contaminated aquifer.
    Long SC; Aelion CM
    Appl Biochem Biotechnol; 1999 Feb; 76(2):79-97. PubMed ID: 10349713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment.
    Rothermich MM; Hayes LA; Lovley DR
    Environ Sci Technol; 2002 Nov; 36(22):4811-7. PubMed ID: 12487304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing in situ mineralization of recalcitrant organic compounds in vadose zone sediments using delta13C and 14C measurements.
    Kirtland BC; Aelion CM; Stone PA
    J Contam Hydrol; 2005 Jan; 76(1-2):1-18. PubMed ID: 15588571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UAF radiorespirometric protocol for assessing hydrocarbon mineralization potential in environmental samples.
    Brown EJ; Resnick SM; Rebstock C; Luong HV; Lindstrom J
    Biodegradation; 1991; 2(2):121-7. PubMed ID: 1368153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behaviour of carbon-14 containing low molecular weight organic compounds in contaminated groundwater under aerobic conditions.
    Boylan AA; Stewart DI; Graham JT; Burke IT
    J Environ Radioact; 2018 Dec; 192():279-288. PubMed ID: 29990775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis.
    Hidalgo KJ; Teramoto EH; Soriano AU; Valoni E; Baessa MP; Richnow HH; Vogt C; Chang HK; Oliveira VM
    Sci Total Environ; 2020 Mar; 708():135152. PubMed ID: 31812384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Testing of some assumptions about biodegradability in soil as measured by carbon dioxide evolution.
    el-Din Sharabi N; Bartha R
    Appl Environ Microbiol; 1993 Apr; 59(4):1201-5. PubMed ID: 8476294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments.
    Coates JD; Woodward J; Allen J; Philp P; Lovley DR
    Appl Environ Microbiol; 1997 Sep; 63(9):3589-93. PubMed ID: 9341091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions.
    Edwards EA; Grbić-Galić D
    Appl Environ Microbiol; 1992 Aug; 58(8):2663-6. PubMed ID: 1514813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA).
    Finneran KT; Lovley DR
    Environ Sci Technol; 2001 May; 35(9):1785-90. PubMed ID: 11355193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ stimulation of aerobic PCB biodegradation in Hudson River sediments.
    Harkness MR; McDermott JB; Abramowicz DA; Salvo JJ; Flanagan WP; Stephens ML; Mondello FJ; May RJ; Lobos JH; Carroll KM
    Science; 1993 Jan; 259(5094):503-7. PubMed ID: 8424172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen-enhanced biodegradation of phenoxy acids in ground water at contaminated sites.
    Tuxen N; Reitzel LA; Albrechtsen HJ; Bjerg PL
    Ground Water; 2006; 44(2):256-65. PubMed ID: 16556207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.