These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 19036414)

  • 1. Wetland influences on mercury transport and bioaccumulation in South Carolina.
    Guentzel JL
    Sci Total Environ; 2009 Feb; 407(4):1344-53. PubMed ID: 19036414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flood hydrology and methylmercury availability in coastal plain rivers.
    Bradley PM; Journey CA; Chapelle FH; Lowery MA; Conrads PA
    Environ Sci Technol; 2010 Dec; 44(24):9285-90. PubMed ID: 21080644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of watershed parameters on mercury distribution in different environmental compartments in the Mobile Alabama River Basin, USA.
    Warner KA; Bonzongo JC; Roden EE; Ward GM; Green AC; Chaubey I; Lyons WB; Arrington DA
    Sci Total Environ; 2005 Jul; 347(1-3):187-207. PubMed ID: 16084978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mercury concentrations in water and hybrid striped bass (Morone saxatilis × M. chrysops) muscle tissue samples collected from the Ohio River, USA.
    Emery EB; Spaeth JP
    Arch Environ Contam Toxicol; 2011 Apr; 60(3):486-95. PubMed ID: 20577729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term changes in mercury concentrations in fish from the middle Savannah River.
    Paller MH; Littrell JW
    Sci Total Environ; 2007 Sep; 382(2-3):375-82. PubMed ID: 17544059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region.
    Hall BD; Aiken GR; Krabbenhoft DP; Marvin-Dipasquale M; Swarzenski CM
    Environ Pollut; 2008 Jul; 154(1):124-34. PubMed ID: 18242808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial trends and factors affecting mercury bioaccumulation in freshwater fishes of Washington State, USA.
    Mathieu C; Furl CV; Roberts TM; Friese M
    Arch Environ Contam Toxicol; 2013 Jul; 65(1):122-31. PubMed ID: 23435684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relationship between wetlands and mercury in brook trout.
    Castro MS; Hilderbrand RH; Thompson J; Heft A; Rivers SE
    Arch Environ Contam Toxicol; 2007 Jan; 52(1):97-103. PubMed ID: 17061050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary mercury exposure and bioaccumulation in amphibian larvae inhabiting Carolina bay wetlands.
    Unrine JM; Jagoe CH; Brinton AC; Brant HA; Garvin NT
    Environ Pollut; 2005 May; 135(2):245-53. PubMed ID: 15734584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial variability in the speciation and bioaccumulation of mercury in an arid subtropical reservoir ecosystem.
    Becker JC; Groeger AW; Nowlin WH; Chumchal MM; Hahn D
    Environ Toxicol Chem; 2011 Oct; 30(10):2300-11. PubMed ID: 21769922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury speciation in the Valdeazogues River-La Serena Reservoir system: influence of Almadén (Spain) historic mining activities.
    Berzas Nevado JJ; Rodríguez Martín-Doimeadios RC; Moreno MJ
    Sci Total Environ; 2009 Mar; 407(7):2372-82. PubMed ID: 19167027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mercury transport and bioaccumulation in riverbank communities of the Alvarado Lagoon System, Veracruz State, Mexico.
    Guentzel JL; Portilla E; Keith KM; Keith EO
    Sci Total Environ; 2007 Dec; 388(1-3):316-24. PubMed ID: 17850849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States.
    Riva-Murray K; Chasar LC; Bradley PM; Burns DA; Brigham ME; Smith MJ; Abrahamsen TA
    Ecotoxicology; 2011 Oct; 20(7):1530-42. PubMed ID: 21743999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wetland influence on mercury fate and transport in a temperate forested watershed.
    Selvendiran P; Driscoll CT; Bushey JT; Montesdeoca MR
    Environ Pollut; 2008 Jul; 154(1):46-55. PubMed ID: 18215448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of dissolved organic carbon on methylmercury bioavailability across Minnesota stream ecosystems.
    Tsui MT; Finlay JC
    Environ Sci Technol; 2011 Jul; 45(14):5981-7. PubMed ID: 21696154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra- and inter-specific variability in total and methylmercury bioaccumulation by eight marine fish species from the Azores.
    Magalhães MC; Costa V; Menezes GM; Pinho MR; Santos RS; Monteiro LR
    Mar Pollut Bull; 2007 Oct; 54(10):1654-62. PubMed ID: 17727898
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of methylmercury from tributary streams on mercury levels in Savannah River Asiatic clams.
    Paller MH; Jagoe CH; Bennett H; Brant HA; Bowers JA
    Sci Total Environ; 2004 Jun; 325(1-3):209-19. PubMed ID: 15144790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of potentially nonlethal sampling methods for monitoring mercury concentrations in smallmouth bass (Micropterus dolomieu).
    Schmitt CJ; Brumbaugh WG
    Arch Environ Contam Toxicol; 2007 Jul; 53(1):84-95. PubMed ID: 17486284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors controlling mercury and methylmercury concentrations in largemouth bass (Micropterus salmoides) and other fish from Maryland reservoirs.
    Sveinsdottir AY; Mason RP
    Arch Environ Contam Toxicol; 2005 Nov; 49(4):528-45. PubMed ID: 16205988
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mercury in fish scales as an assessment method for predicting muscle tissue mercury concentrations in largemouth bass.
    Lake JL; Ryba SA; Serbst JR; Libby AD
    Arch Environ Contam Toxicol; 2006 May; 50(4):539-44. PubMed ID: 16435082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.