These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 19036502)

  • 1. A high-stability silica-clay composite: synthesis, characterization and combination with TiO2 as a novel photocatalyst for Azo dye.
    Li F; Jiang Y; Xia M; Sun M; Xue B; Ren X
    J Hazard Mater; 2009 Jun; 165(1-3):1219-23. PubMed ID: 19036502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water.
    Stathatos E; Papoulis D; Aggelopoulos CA; Panagiotaras D; Nikolopoulou A
    J Hazard Mater; 2012 Apr; 211-212():68-76. PubMed ID: 22177018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and characterization of hydrophobic TiO(2) pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity.
    Ding X; An T; Li G; Zhang S; Chen J; Yuan J; Zhao H; Chen H; Sheng G; Fu J
    J Colloid Interface Sci; 2008 Apr; 320(2):501-7. PubMed ID: 18279880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photodegradation of an azo dye using immobilized nanoparticles of TiO2 supported by natural porous mineral.
    Li F; Sun S; Jiang Y; Xia M; Sun M; Xue B
    J Hazard Mater; 2008 Apr; 152(3):1037-44. PubMed ID: 17869418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation.
    Dvininov E; Popovici E; Pode R; Cocheci L; Barvinschi P; Nica V
    J Hazard Mater; 2009 Aug; 167(1-3):1050-6. PubMed ID: 19250741
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of process parameters on the photodegradation of synthesized azo pyridone dye in TiO2 water suspension under simulated sunlight.
    Dostanić JM; Loncarević DR; Banković PT; Cvetković OG; Jovanović DM; Mijin DZ
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(1):70-9. PubMed ID: 21104497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of hydrothermally prepared supported photocatalytic composite in organic micro-pollutants removal from the water.
    Shivaraju HP; Byrappa K
    J Environ Sci Eng; 2012 Jul; 54(3):353-64. PubMed ID: 24749194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Xanthan gum/titanium dioxide nanocomposite for photocatalytic degradation of methyl orange dye.
    Inamuddin
    Int J Biol Macromol; 2019 Jan; 121():1046-1053. PubMed ID: 30336247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilisation of TiO2 for combined photocatalytic-biological azo dye degradation.
    Jonstrup M; Wärjerstam M; Murto M; Mattiasson B
    Water Sci Technol; 2010; 62(3):525-31. PubMed ID: 20705999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photocatalytic decolorisation and mineralisation of orange dyes on immobilised titanium dioxide nanoparticles.
    Khataee AR; Pons MN; Zahraa O
    Water Sci Technol; 2010; 62(5):1112-20. PubMed ID: 20818053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodegradation of Orange II by mesoporous TiO2.
    Kuang L; Zhao Y; Liu L
    J Environ Monit; 2011 Sep; 13(9):2496-501. PubMed ID: 21833403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure.
    Khataee AR; Pons MN; Zahraa O
    J Hazard Mater; 2009 Aug; 168(1):451-7. PubMed ID: 19278779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photocatalytic oxidation of methyl-orange in aqueous suspension: comparison of the performance of different polycrystalline titanium dioxide.
    Marcì G; Augugliaro V; Bianco Prevot A; Baiocchi C; García-López E; Loddo V; Palmisano L; Pramauro E; Schiavello M
    Ann Chim; 2003; 93(7-8):639-48. PubMed ID: 12940597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of core-shell bioaffinity chitosan-TiO₂ composite and its environmental applications.
    Xiao G; Su H; Tan T
    J Hazard Mater; 2015; 283():888-96. PubMed ID: 25464333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of PDMS-SiO
    Xu F; Tan W; Liu H; Li D; Li Y; Wang M
    Water Sci Technol; 2016 Oct; 74(7):1680-1688. PubMed ID: 27763348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic activity of novel AgBr/WO3 composite photocatalyst under visible light irradiation for methyl orange degradation.
    Cao J; Luo B; Lin H; Chen S
    J Hazard Mater; 2011 Jun; 190(1-3):700-6. PubMed ID: 21561712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocatalytic discoloration of Methyl Orange by anatase/schorl composite: optimization using response surface method.
    Xu HY; Liu WC; Shi J; Zhao H; Qi SY
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):1582-91. PubMed ID: 23943082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile fabrication of TiO2-graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning.
    Zhu P; Nair AS; Shengjie P; Shengyuan Y; Ramakrishna S
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):581-5. PubMed ID: 22292504
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and photocatalytic activity of poly(3-hexylthiophene)-modified TiO2 for degradation of methyl orange under visible light.
    Wang D; Zhang J; Luo Q; Li X; Duan Y; An J
    J Hazard Mater; 2009 Sep; 169(1-3):546-50. PubMed ID: 19410363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange.
    Zhang Y; Wan J; Ke Y
    J Hazard Mater; 2010 May; 177(1-3):750-4. PubMed ID: 20071078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.