BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 19036652)

  • 1. Effect of silicon content on the sintering and biological behaviour of Ca10(PO4)(6-x)(SiO4)x(OH)(2-x) ceramics.
    Palard M; Combes J; Champion E; Foucaud S; Rattner A; Bernache-Assollant D
    Acta Biomater; 2009 May; 5(4):1223-32. PubMed ID: 19036652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response.
    Balamurugan A; Rebelo AH; Lemos AF; Rocha JH; Ventura JM; Ferreira JM
    Dent Mater; 2008 Oct; 24(10):1374-80. PubMed ID: 18417203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical analysis of silica doped hydroxyapatite biomaterials consolidated by a spark plasma sintering method.
    Xu JL; Khor KA
    J Inorg Biochem; 2007 Feb; 101(2):187-95. PubMed ID: 17095092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical characterization of silicon-substituted hydroxyapatite.
    Gibson IR; Best SM; Bonfield W
    J Biomed Mater Res; 1999 Mar; 44(4):422-8. PubMed ID: 10397946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of dense hydroxylapatite or rhenanite containing bioactive glass composites.
    Kangasniemi IM; de Groot K; Becht JG; Yli-Urpo A
    J Biomed Mater Res; 1992 May; 26(5):663-74. PubMed ID: 1324942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sintering behaviour of hydroxyapatite bioceramics.
    Ramesh S; Tan CY; Aw KL; Yeo WH; Hamdi M; Sopyan I; Teng WD
    Med J Malaysia; 2008 Jul; 63 Suppl A():89-90. PubMed ID: 19024998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constitutive modeling of the densification and the grain growth of hydroxyapatite ceramics.
    He Z; Ma J; Wang C
    Biomaterials; 2005 May; 26(14):1613-21. PubMed ID: 15576135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal and chemical stability of fluorohydroxyapatite ceramics with different fluorine contents.
    Chen Y; Miao X
    Biomaterials; 2005 Apr; 26(11):1205-10. PubMed ID: 15475049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering.
    Rouahi M; Champion E; Gallet O; Jada A; Anselme K
    Colloids Surf B Biointerfaces; 2006 Jan; 47(1):10-9. PubMed ID: 16387480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and characterization of titanium-containing hydroxyapatite for medical applications.
    Huang J; Best SM; Bonfield W; Buckland T
    Acta Biomater; 2010 Jan; 6(1):241-9. PubMed ID: 19577668
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate characterization of pure silicon-substituted hydroxyapatite powders synthesized by a new precipitation route.
    Marchat D; Zymelka M; Coelho C; Gremillard L; Joly-Pottuz L; Babonneau F; Esnouf C; Chevalier J; Bernache-Assollant D
    Acta Biomater; 2013 Jun; 9(6):6992-7004. PubMed ID: 23518476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties.
    Wu C; Ramaswamy Y; Kwik D; Zreiqat H
    Biomaterials; 2007 Jul; 28(21):3171-81. PubMed ID: 17445881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of processing parameters on microstructure and biocompatibility of surface laser sintered hydroxyapatite-SiO2 composites.
    Kivitz E; Görke R; Schilling AF; Zhang J; Heinrich JG
    J Biomed Mater Res B Appl Biomater; 2013 May; 101(4):568-75. PubMed ID: 23255362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite/SiO(2)-CaO-P(2)O(5) glass materials: in vitro bioactivity and biocompatibility.
    Padilla S; Román J; Sánchez-Salcedo S; Vallet-Regí M
    Acta Biomater; 2006 May; 2(3):331-42. PubMed ID: 16701892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine structure analysis and sintering properties of Si-doped hydroxyapatite.
    Qiu ZY; Li G; Zhang YQ; Liu J; Hu W; Ma J; Zhang SM
    Biomed Mater; 2012 Aug; 7(4):045009. PubMed ID: 22652464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron spin resonance in silicon substituted apatite and tricalcium phosphate.
    Pietak AM; Reid JW; Sayer M
    Biomaterials; 2005 Jun; 26(18):3819-30. PubMed ID: 15626430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.
    Ning CQ; Zhou Y
    Biomaterials; 2004 Aug; 25(17):3379-87. PubMed ID: 15020110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.
    Reid JW; Pietak A; Sayer M; Dunfield D; Smith TJ
    Biomaterials; 2005 Jun; 26(16):2887-97. PubMed ID: 15603784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural comparison of hydroxyapatite and silicon-substituted hydroxyapatite for biomedical applications.
    Porter AE; Best SM; Bonfield W
    J Biomed Mater Res A; 2004 Jan; 68(1):133-41. PubMed ID: 14661258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.