These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
9. Influence of carbon to nitrogen ratios on soybean somatic embryo (cv. Jack) growth and composition. Truong Q; Koch K; Yoon JM; Everard JD; Shanks JV J Exp Bot; 2013 Jul; 64(10):2985-95. PubMed ID: 23740932 [TBL] [Abstract][Full Text] [Related]
10. Accumulation of storage products in oat during kernel development. Banaś A; Dahlqvist A; Debski H; Gummeson PO; Stymne S Biochem Soc Trans; 2000 Dec; 28(6):705-7. PubMed ID: 11171178 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and molecular characterization of Avena indolines and their role in kernel texture. Gazza L; Taddei F; Conti S; Gazzelloni G; Muccilli V; Janni M; D'Ovidio R; Alfieri M; Redaelli R; Pogna NE Mol Genet Genomics; 2015 Feb; 290(1):39-54. PubMed ID: 25120168 [TBL] [Abstract][Full Text] [Related]
12. Positional cues for the starch/lipid balance in maize kernels and resource partitioning to the embryo. Rolletschek H; Koch K; Wobus U; Borisjuk L Plant J; 2005 Apr; 42(1):69-83. PubMed ID: 15773854 [TBL] [Abstract][Full Text] [Related]
13. Using transcriptome sequencing (RNA-Seq) to screen genes involved in β-glucan biosynthesis and accumulation during oat seed development. Qi BJ; Ji MX; He ZQ PeerJ; 2024; 12():e17804. PubMed ID: 39346057 [TBL] [Abstract][Full Text] [Related]
14. WRINKLED1 homologs highly and functionally express in oil-rich endosperms of oat and castor. Yang Z; Liu X; Li N; Du C; Wang K; Zhao C; Wang Z; Hu Y; Zhang M Plant Sci; 2019 Oct; 287():110193. PubMed ID: 31481195 [TBL] [Abstract][Full Text] [Related]
15. Mutation of the transcription factor LEAFY COTYLEDON 2 alters the chemical composition of Arabidopsis seeds, decreasing oil and protein content, while maintaining high levels of starch and sucrose in mature seeds. Angeles-Núñez JG; Tiessen A J Plant Physiol; 2011 Nov; 168(16):1891-900. PubMed ID: 21665323 [TBL] [Abstract][Full Text] [Related]
16. Arabidopsis sucrose synthase 2 and 3 modulate metabolic homeostasis and direct carbon towards starch synthesis in developing seeds. Angeles-Núñez JG; Tiessen A Planta; 2010 Aug; 232(3):701-18. PubMed ID: 20559653 [TBL] [Abstract][Full Text] [Related]
17. Cytological structures and physiological and biochemical characteristics of covered oat (Avena sativa L.) and naked oat (Avena nuda L.) seeds during high-temperature artificial aging. Yao R; Liu H; Wang J; Shi S; Zhao G; Zhou X BMC Plant Biol; 2024 Jun; 24(1):530. PubMed ID: 38862888 [TBL] [Abstract][Full Text] [Related]
18. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Vigeolas H; Möhlmann T; Martini N; Neuhaus HE; Geigenberger P Plant Physiol; 2004 Sep; 136(1):2676-86. PubMed ID: 15333758 [TBL] [Abstract][Full Text] [Related]
19. The starch-bound alpha-amylase/trypsin-inhibitors in Avena. Gazza L; Gazzelloni G; Taddei F; Latini A; Muccilli V; Alfieri M; Conti S; Redaelli R; Pogna NE Mol Genet Genomics; 2016 Dec; 291(6):2043-2054. PubMed ID: 27495179 [TBL] [Abstract][Full Text] [Related]
20. Degradation of oat mRNAs during seed development. Johnson RR; Chaverra ME; Cranston HJ; Pleban T; Dyer WE Plant Mol Biol; 1999 Mar; 39(4):823-33. PubMed ID: 10350095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]