These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
45. Display-wide influences on figure-ground perception: the case of symmetry. Mojica AJ; Peterson MA Atten Percept Psychophys; 2014 May; 76(4):1069-84. PubMed ID: 24627210 [TBL] [Abstract][Full Text] [Related]
46. A high-accuracy and convenient figure measurement system for large convex lens. Tian Z; Yang W; Sui Y; Kang Y; Liu W; Yang H Opt Express; 2012 May; 20(10):10761-75. PubMed ID: 22565700 [TBL] [Abstract][Full Text] [Related]
47. Ray-mapping approach in double freeform surface design for collimated beam shaping beyond the paraxial approximation. Bösel C; Worku NG; Gross H Appl Opt; 2017 May; 56(13):3679-3688. PubMed ID: 28463252 [TBL] [Abstract][Full Text] [Related]
48. X-ray focusing by the system of refractive lens(es) placed inside asymmetric channel-cut crystals. Grigoryan AH; Balyan MK; Toneyan AH J Synchrotron Radiat; 2010 May; 17(3):332-47. PubMed ID: 20400831 [TBL] [Abstract][Full Text] [Related]
49. Robust motion-free and error-correcting method of estimating the focal length of a lens. Reza SA; Anjum A Appl Opt; 2017 Jan; 56(2):342-353. PubMed ID: 28085873 [TBL] [Abstract][Full Text] [Related]
50. Discontinuous free-form lens design for prescribed irradiance. Wang L; Qian K; Luo Y Appl Opt; 2007 Jun; 46(18):3716-23. PubMed ID: 17538667 [TBL] [Abstract][Full Text] [Related]
51. Fabrication of large diffractive optical elements in thick film on a concave lens surface. Xie Y; Lu Z; Li F Opt Express; 2003 May; 11(9):992-5. PubMed ID: 19465961 [TBL] [Abstract][Full Text] [Related]
52. Effects of fabrication errors on the performance of cylindrical diffractive lenses: rigorous boundary-element method and scalar approximation. Glytsis EN; Harrigan ME; Gaylord TK; Hirayama K Appl Opt; 1998 Oct; 37(28):6591-602. PubMed ID: 18301465 [TBL] [Abstract][Full Text] [Related]
54. Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser. Zheng C; Hu A; Li R; Bridges D; Chen T Opt Express; 2015 Jun; 23(13):17584-98. PubMed ID: 26191766 [TBL] [Abstract][Full Text] [Related]
55. Linear parabolic single-crystal diamond refractive lenses for synchrotron X-ray sources. Terentyev S; Polikarpov M; Snigireva I; Di Michiel M; Zholudev S; Yunkin V; Kuznetsov S; Blank V; Snigirev A J Synchrotron Radiat; 2017 Jan; 24(Pt 1):103-109. PubMed ID: 28009551 [TBL] [Abstract][Full Text] [Related]
56. All-sky camera with a concave mirror. Andreić Z; Radić N Appl Opt; 1996 Jan; 35(1):149-53. PubMed ID: 21068991 [TBL] [Abstract][Full Text] [Related]
57. The concave cusp as a determiner of figure-ground. Stevens KA; Brookes A Perception; 1988; 17(1):35-42. PubMed ID: 3205668 [TBL] [Abstract][Full Text] [Related]
58. Adiabatically focusing X-rays to the nanometer scale by one dimensional long kinoform lenses: comparison between an ideal Cartesian oval refocusing lens and a parabolic lens. Xu Y; Yang X; Lu T; Liu J; Lin H Opt Express; 2022 Jan; 30(2):2402-2412. PubMed ID: 35209381 [TBL] [Abstract][Full Text] [Related]
59. Design and fabrication of a copolymer aspheric bi-convex lens utilizing thermal energy and electrostatic force in a dynamic fluidic. Hung KY; Fan CC; Tseng FG; Chen YK Opt Express; 2010 Mar; 18(6):6014-23. PubMed ID: 20389621 [TBL] [Abstract][Full Text] [Related]
60. Jet printing of convex and concave polymer micro-lenses. Blattmann M; Ocker M; Zappe H; Seifert A Opt Express; 2015 Sep; 23(19):24525-36. PubMed ID: 26406656 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]