These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19037414)

  • 41. Surface-plasmon-coupled emission: new technology for studying molecular processes.
    Gryczynski Z; Gryczynski I; Matveeva E; Malicka J; Nowaczyk K; Lakowicz JR
    Methods Cell Biol; 2004; 75():73-104. PubMed ID: 15603423
    [No Abstract]   [Full Text] [Related]  

  • 42. Surface plasmon-coupled emission: what can directional fluorescence bring to the analytical sciences?
    Cao SH; Cai WP; Liu Q; Li YQ
    Annu Rev Anal Chem (Palo Alto Calif); 2012; 5():317-36. PubMed ID: 22524220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control.
    Pompa PP; Martiradonna L; Torre AD; Sala FD; Manna L; De Vittorio M; Calabi F; Cingolani R; Rinaldi R
    Nat Nanotechnol; 2006 Nov; 1(2):126-30. PubMed ID: 18654164
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characteristics of gap plasmon waveguide with stub structures.
    Matsuzaki Y; Okamoto T; Haraguchi M; Fukui M; Nakagaki M
    Opt Express; 2008 Oct; 16(21):16314-25. PubMed ID: 18852737
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multi-wavelength immunoassays using surface plasmon-coupled emission.
    Matveeva E; Malicka J; Gryczynski I; Gryczynski Z; Lakowicz JR
    Biochem Biophys Res Commun; 2004 Jan; 313(3):721-6. PubMed ID: 14697250
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-enhanced fluorescence: an emerging tool in biotechnology.
    Aslan K; Gryczynski I; Malicka J; Matveeva E; Lakowicz JR; Geddes CD
    Curr Opin Biotechnol; 2005 Feb; 16(1):55-62. PubMed ID: 15722016
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal-enhanced up-conversion fluorescence: effective triplet-triplet annihilation near silver surface.
    Baluschev S; Yu F; Miteva T; Ahl S; Yasuda A; Nelles G; Knoll W; Wegner G
    Nano Lett; 2005 Dec; 5(12):2482-4. PubMed ID: 16351199
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanofocusing of radially polarized light with dielectric-metal-dielectric probe.
    Antosiewicz TJ; Wróbel P; Szoplik T
    Opt Express; 2009 May; 17(11):9191-6. PubMed ID: 19466168
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quintuple-modality (SERS-MRI-CT-TPL-PTT) plasmonic nanoprobe for theranostics.
    Liu Y; Chang Z; Yuan H; Fales AM; Vo-Dinh T
    Nanoscale; 2013 Dec; 5(24):12126-31. PubMed ID: 24162005
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Studies on photoluminescence characteristics of curcumin in acrylamide polymer].
    Wang S; Chang XJ; Gong GQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Mar; 24(3):274-7. PubMed ID: 15759973
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding.
    Miyata M; Takahara J
    Opt Express; 2013 Apr; 21(7):7882-90. PubMed ID: 23571879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Spatially selective optical tuning of quantum dot thin film luminescence.
    Chen J; Chan YH; Yang T; Wark SE; Son DH; Batteas JD
    J Am Chem Soc; 2009 Dec; 131(51):18204-5. PubMed ID: 20028145
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Use of a highly sensitive two-dimensional luminescence imaging system to monitor endogenous bioluminescence in plant leaves.
    Flor-Henry M; McCabe TC; de Bruxelles GL; Roberts MR
    BMC Plant Biol; 2004 Nov; 4():19. PubMed ID: 15550176
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scattering of a surface plasmon polariton by a localized dielectric surface defect.
    Arias RE; Maradudin AA
    Opt Express; 2013 Apr; 21(8):9734-56. PubMed ID: 23609682
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plasmon-modulated photoluminescence of individual gold nanostructures.
    Hu H; Duan H; Yang JK; Shen ZX
    ACS Nano; 2012 Nov; 6(11):10147-55. PubMed ID: 23072661
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Simple luminescence detector for capillary electrophoresis.
    Segura-Carretero A; Fernández-Sánchez JF; Fernández-Gutiérrez A
    Methods Mol Biol; 2009; 503():221-37. PubMed ID: 19151944
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhancing the efficiency of slit-coupling to surface-plasmon-polaritons via dispersion engineering.
    Mehfuz R; Maqsood MW; Chau KJ
    Opt Express; 2010 Aug; 18(17):18206-16. PubMed ID: 20721210
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Compact slit-based couplers for metal-dielectric-metal plasmonic waveguides.
    Huang Y; Min C; Veronis G
    Opt Express; 2012 Sep; 20(20):22233-44. PubMed ID: 23037371
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Approach to visualization of and optical sensing by Bloch surface waves in noble or base metal-based plasmonic photonic crystal slabs.
    Baryshev AV; Merzlikin AM
    Appl Opt; 2014 May; 53(14):3142-6. PubMed ID: 24922037
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.