These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 19037416)

  • 21. Local spectral time-domain method for electromagnetic wave propagation.
    Bao G; Wei GW; Zhao S
    Opt Lett; 2003 Apr; 28(7):513-5. PubMed ID: 12696600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On Maxwell's equations in non-stationary media.
    Vorgul I
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1781-8. PubMed ID: 18218602
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The double nature of Maxwell's physical analogies.
    Nappo F
    Stud Hist Philos Sci; 2021 Oct; 89():212-225. PubMed ID: 34482162
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reformulation of Maxwell's equations to incorporate near-solute solvent structure.
    Yang PK; Lim C
    J Phys Chem B; 2008 Sep; 112(35):10791-4. PubMed ID: 18698705
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis.
    Johnson S; Joannopoulos J
    Opt Express; 2001 Jan; 8(3):173-90. PubMed ID: 19417802
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scattering of a zero-order Bessel beam by arbitrarily shaped homogeneous dielectric particles.
    Cui Z; Han Y; Han L
    J Opt Soc Am A Opt Image Sci Vis; 2013 Oct; 30(10):1913-20. PubMed ID: 24322844
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient solution of Maxwell's equations for optical fibers with arbitrary refractive-index profiles.
    Eoll CK; Goldring T; Lucas TR
    Opt Lett; 1987 Oct; 12(10):841-3. PubMed ID: 19741891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct time integration of Maxwell's equations in two-dimensional dielectric waveguides for propagation and scattering of femtosecond electromagnetic solitons.
    Joseph RM; Goorjian PM; Taflove A
    Opt Lett; 1993 Apr; 18(7):491-3. PubMed ID: 19802177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromagnetic-field propagation based on Maxwell's propagation operator.
    Shintaku T
    Opt Lett; 1996 Nov; 21(21):1727-8. PubMed ID: 19881781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quasimonochromatic exact solutions to Maxwell's equations with finite total energy and arbitrary frequencies in the vacuum.
    Ma X; Thompson RS
    Phys Rev E; 2017 Dec; 96(6-1):062114. PubMed ID: 29347289
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Coupled nonlinear Schrodinger field equations for electromagnetic wave propagation in nonlinear left-handed materials.
    Lazarides N; Tsironis GP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2B):036614. PubMed ID: 15903612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
    Kaminer I; Nemirovsky J; Segev M
    Opt Express; 2012 Aug; 20(17):18827-35. PubMed ID: 23038522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Perturbation theory for Maxwell's equations with shifting material boundaries.
    Johnson SG; Ibanescu M; Skorobogatiy MA; Weisberg O; Joannopoulos JD; Fink Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066611. PubMed ID: 12188855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computation of radiation pressure force exerted on arbitrary shaped homogeneous particles by high-order Bessel vortex beams using MLFMA.
    Yang M; Wu Y; Ren KF; Sheng X
    Opt Express; 2016 Nov; 24(24):27979-27992. PubMed ID: 27906365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Velocity-dependent optical forces and Maxwell's demon.
    Franson JD
    Sci Rep; 2019 Sep; 9(1):13798. PubMed ID: 31551456
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem.
    Hesthaven JS; Warburton T
    Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Homogenization of Maxwell's equations in a layered system beyond the static approximation.
    Merzlikin AM; Puzko RS
    Sci Rep; 2020 Sep; 10(1):15783. PubMed ID: 32978458
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: application to the study of a radar dome.
    Belkhir A; Baida FI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 2):056701. PubMed ID: 18643189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Derivation of the scalar radiative transfer equation from energy conservation of Maxwell's equations in the far field.
    Ripoll J
    J Opt Soc Am A Opt Image Sci Vis; 2011 Aug; 28(8):1765-75. PubMed ID: 21811340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.