These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19037786)

  • 1. Variability of the minimal transmembrane voltage resulting in detectable membrane electroporation.
    Towhidi L; Kotnik T; Pucihar G; Firoozabadi SM; Mozdarani H; Miklavcic D
    Electromagn Biol Med; 2008; 27(4):372-85. PubMed ID: 19037786
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A time-dependent numerical model of transmembrane voltage inducement and electroporation of irregularly shaped cells.
    Pucihar G; Miklavcic D; Kotnik T
    IEEE Trans Biomed Eng; 2009 May; 56(5):1491-501. PubMed ID: 19203876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical determination of transmembrane voltage induced on irregularly shaped cells.
    Pucihar G; Kotnik T; Valic B; Miklavcic D
    Ann Biomed Eng; 2006 Apr; 34(4):642-52. PubMed ID: 16547608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear current-voltage relationship of the plasma membrane of single CHO cells.
    Krassen H; Pliquett U; Neumann E
    Bioelectrochemistry; 2007 Jan; 70(1):71-7. PubMed ID: 16716764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrical modeling of the influence of medium conductivity on electroporation.
    Ivorra A; Villemejane J; Mir LM
    Phys Chem Chem Phys; 2010 Sep; 12(34):10055-64. PubMed ID: 20585676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis.
    Valic B; Pavlin M; Miklavcic D
    Bioelectrochemistry; 2004 Jun; 63(1-2):311-5. PubMed ID: 15110294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Analytical model for the transmembrane voltage induced on a permeabilized cell membrane in suspensions exposed to DC pulse fields].
    Qin Y; Jiang Y; Lai S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):1-4. PubMed ID: 17333880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of electroporation in spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Artif Organs; 2004 Apr; 28(4):357-61. PubMed ID: 15084196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osmotically induced membrane tension facilitates the triggering of living cell electropermeabilization.
    Barrau C; Teissié J; Gabriel B
    Bioelectrochemistry; 2004 Jun; 63(1-2):327-32. PubMed ID: 15110297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of intense, subnanosecond electrical pulse-induced transmembrane voltage in spheroidal cells with arbitrary orientation.
    Hu Q; Joshi RP
    IEEE Trans Biomed Eng; 2009 Jun; 56(6):1617-26. PubMed ID: 19258194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High frequency electroporation efficiency is under control of membrane capacitive charging and voltage potential relaxation.
    Novickij V; Ruzgys P; Grainys A; Šatkauskas S
    Bioelectrochemistry; 2018 Feb; 119():92-97. PubMed ID: 28922628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of the electrical conductivity and polarization in a suspension of spherical cells.
    Ramos A; Suzuki DO; Marques JL
    Bioelectrochemistry; 2006 May; 68(2):213-7. PubMed ID: 16256446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feasibility study for cell electroporation detection and separation by means of dielectrophoresis.
    Oblak J; Krizaj D; Amon S; Macek-Lebar A; Miklavcic D
    Bioelectrochemistry; 2007 Nov; 71(2):164-71. PubMed ID: 17509948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical and experimental analysis of conductivity, ion diffusion and molecular transport during cell electroporation--relation between short-lived and long-lived pores.
    Pavlin M; Miklavcic D
    Bioelectrochemistry; 2008 Nov; 74(1):38-46. PubMed ID: 18499534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of molecular uptake via electroporation.
    Li J; Lin H
    Bioelectrochemistry; 2011 Aug; 82(1):10-21. PubMed ID: 21621484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmembrane voltage induced on altered erythrocyte shapes exposed to RF fields.
    Muñoz S; Sebastián JL; Sancho M; Miranda JM
    Bioelectromagnetics; 2004 Dec; 25(8):631-3. PubMed ID: 15515030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalent pulse parameters for electroporation.
    Pucihar G; Krmelj J; Reberšek M; Napotnik TB; Miklavčič D
    IEEE Trans Biomed Eng; 2011 Nov; 58(11):3279-88. PubMed ID: 21900067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment.
    Valic B; Golzio M; Pavlin M; Schatz A; Faurie C; Gabriel B; Teissié J; Rols MP; Miklavcic D
    Eur Biophys J; 2003 Sep; 32(6):519-28. PubMed ID: 12712266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical assessment of thermal response associated with in vivo skin electroporation: the importance of the composite skin model.
    Becker SM; Kuznetsov AV
    J Biomech Eng; 2007 Jun; 129(3):330-40. PubMed ID: 17536900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of pore disappearance in a cell after electroporation.
    Saulis G
    Biomed Sci Instrum; 1999; 35():409-14. PubMed ID: 11143387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.