These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 19038355)
1. Sphingolipid biosynthesis is required for polar growth in the dimorphic phytopathogen Ustilago maydis. Cánovas D; Pérez-Martín J Fungal Genet Biol; 2009 Feb; 46(2):190-200. PubMed ID: 19038355 [TBL] [Abstract][Full Text] [Related]
2. Spa2 is required for morphogenesis but it is dispensable for pathogenicity in the phytopathogenic fungus Ustilago maydis. Carbó N; Pérez-Martín J Fungal Genet Biol; 2008 Sep; 45(9):1315-27. PubMed ID: 18674629 [TBL] [Abstract][Full Text] [Related]
3. Isolation of UmRrm75, a gene involved in dimorphism and virulence of Ustilago maydis. Rodríguez-Kessler M; Baeza-Montañez L; García-Pedrajas MD; Tapia-Moreno A; Gold S; Jiménez-Bremont JF; Ruiz-Herrera J Microbiol Res; 2012 May; 167(5):270-82. PubMed ID: 22154329 [TBL] [Abstract][Full Text] [Related]
4. The secretome of the maize pathogen Ustilago maydis. Mueller O; Kahmann R; Aguilar G; Trejo-Aguilar B; Wu A; de Vries RP Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S63-70. PubMed ID: 18456523 [TBL] [Abstract][Full Text] [Related]
5. The AGC Ser/Thr kinase Aga1 is essential for appressorium formation and maintenance of the actin cytoskeleton in the smut fungus Ustilago maydis. Berndt P; Lanver D; Kahmann R Mol Microbiol; 2010 Dec; 78(6):1484-99. PubMed ID: 21143319 [TBL] [Abstract][Full Text] [Related]
6. Protein glycosylation in the phytopathogen Ustilago maydis: From core oligosaccharide synthesis to the ER glycoprotein quality control system, a genomic analysis. Fernández-Alvarez A; Elías-Villalobos A; Ibeas JI Fungal Genet Biol; 2010 Sep; 47(9):727-35. PubMed ID: 20554055 [TBL] [Abstract][Full Text] [Related]
7. Posttranscriptional control of growth and development in Ustilago maydis. Vollmeister E; Feldbrügge M Curr Opin Microbiol; 2010 Dec; 13(6):693-9. PubMed ID: 20880737 [TBL] [Abstract][Full Text] [Related]
8. Selective activation by the guanine nucleotide exchange factor Don1 is a main determinant of Cdc42 signalling specificity in Ustilago maydis. Hlubek A; Schink KO; Mahlert M; Sandrock B; Bölker M Mol Microbiol; 2008 May; 68(3):615-23. PubMed ID: 18394145 [TBL] [Abstract][Full Text] [Related]
9. A genome-based analysis of amino acid metabolism in the biotrophic plant pathogen Ustilago maydis. McCann MP; Snetselaar KM Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S77-87. PubMed ID: 18579420 [TBL] [Abstract][Full Text] [Related]
10. Cdk5 kinase regulates the association between adaptor protein Bem1 and GEF Cdc24 in the fungus Ustilago maydis. Alvarez-Tabarés I; Pérez-Martín J J Cell Sci; 2008 Sep; 121(Pt 17):2824-32. PubMed ID: 18682498 [TBL] [Abstract][Full Text] [Related]
11. Sending mixed signals: redundancy vs. uniqueness of signaling components in the plant pathogen, Ustilago maydis. García-Pedrajas MD; Nadal M; Bölker M; Gold SE; Perlin MH Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S22-30. PubMed ID: 18502157 [TBL] [Abstract][Full Text] [Related]
12. Genetics of morphogenesis and pathogenic development of Ustilago maydis. Klosterman SJ; Perlin MH; Garcia-Pedrajas M; Covert SF; Gold SE Adv Genet; 2007; 57():1-47. PubMed ID: 17352901 [TBL] [Abstract][Full Text] [Related]
13. Septins from the phytopathogenic fungus Ustilago maydis are required for proper morphogenesis but dispensable for virulence. Alvarez-Tabarés I; Pérez-Martín J PLoS One; 2010 Sep; 5(9):e12933. PubMed ID: 20885997 [TBL] [Abstract][Full Text] [Related]
14. 14-3-3 regulates the G2/M transition in the basidiomycete Ustilago maydis. Mielnichuk N; Pérez-Martín J Fungal Genet Biol; 2008 Aug; 45(8):1206-15. PubMed ID: 18586536 [TBL] [Abstract][Full Text] [Related]
15. Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mahlert M; Leveleki L; Hlubek A; Sandrock B; Bölker M Mol Microbiol; 2006 Jan; 59(2):567-78. PubMed ID: 16390450 [TBL] [Abstract][Full Text] [Related]
16. Regulation of mating and pathogenic development in Ustilago maydis. Feldbrügge M; Kämper J; Steinberg G; Kahmann R Curr Opin Microbiol; 2004 Dec; 7(6):666-72. PubMed ID: 15556041 [TBL] [Abstract][Full Text] [Related]
17. Fungal development of the plant pathogen Ustilago maydis. Vollmeister E; Schipper K; Baumann S; Haag C; Pohlmann T; Stock J; Feldbrügge M FEMS Microbiol Rev; 2012 Jan; 36(1):59-77. PubMed ID: 21729109 [TBL] [Abstract][Full Text] [Related]
18. The distinct interaction between cell cycle regulation and the widely conserved morphogenesis-related (MOR) pathway in the fungus Ustilago maydis determines morphology. Sartorel E; Pérez-Martín J J Cell Sci; 2012 Oct; 125(Pt 19):4597-608. PubMed ID: 22767510 [TBL] [Abstract][Full Text] [Related]
19. A putative endosomal t-SNARE links exo- and endocytosis in the phytopathogenic fungus Ustilago maydis. Wedlich-Söldner R; Bölker M; Kahmann R; Steinberg G EMBO J; 2000 May; 19(9):1974-86. PubMed ID: 10790364 [TBL] [Abstract][Full Text] [Related]
20. The cdc25 phosphatase is essential for the G2/M phase transition in the basidiomycete yeast Ustilago maydis. Sgarlata C; Pérez-Martín J Mol Microbiol; 2005 Dec; 58(5):1482-96. PubMed ID: 16313631 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]