BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 1903991)

  • 21. Characteristics of interleukin-6-enhanced lymphokine-activated killer cell function.
    Iho S; Shau HY; Golub SH
    Cell Immunol; 1991 Jun; 135(1):66-77. PubMed ID: 2018984
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lymphokine-activated killer cells in rats: analysis of progenitor and effector cell phenotype and relationship to natural killer cells.
    Vujanovic NL; Herberman RB; Olszowy MW; Cramer DV; Salup RR; Reynolds CW; Hiserodt JC
    Cancer Res; 1988 Feb; 48(4):884-90. PubMed ID: 3257412
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The suppressive influences of human tumor necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: synergism of tumor necrosis factor and interferon-gamma.
    Broxmeyer HE; Williams DE; Lu L; Cooper S; Anderson SL; Beyer GS; Hoffman R; Rubin BY
    J Immunol; 1986 Jun; 136(12):4487-95. PubMed ID: 3086433
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of lymphokine-activated killer cell fraction on the development of human hematopoietic progenitor cells.
    Fujimori Y; Hara H; Nagai K
    Cancer Res; 1988 Feb; 48(3):534-8. PubMed ID: 3257166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterogeneous lymphokine-activated killer cell precursor populations. Development of a monoclonal antibody that separates two populations of precursors with distinct culture requirements and separate target-recognition repertoires.
    Fox BA; Rosenberg SA
    Cancer Immunol Immunother; 1989; 29(3):155-66. PubMed ID: 2786456
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of MCF-7 human breast carcinoma in severe combined immunodeficient mice: growth suppression by recombinant interleukin-2 treatment and role of lymphokine-activated killer cells.
    Zhai YF; Esselman WJ; Oakley CS; Chang CC; Welsch CW
    Cancer Immunol Immunother; 1992; 35(4):237-45. PubMed ID: 1511458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of a novel CD56- lymphokine-activated killer cell precursor in cancer patients receiving recombinant interleukin 2.
    McKenzie RS; Simms PE; Helfrich BA; Fisher RI; Ellis TM
    Cancer Res; 1992 Nov; 52(22):6318-22. PubMed ID: 1384959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interleukin 2 induction of lymphokine-activated killer (LAK) activity in the peripheral blood and bone marrow of acute leukemia patients. I. Feasibility of LAK generation in adult patients with active disease and in remission.
    Adler A; Chervenick PA; Whiteside TL; Lotzová E; Herberman RB
    Blood; 1988 Mar; 71(3):709-16. PubMed ID: 3257887
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gelatin sponge model of effector recruitment: tumoricidal activity of adherent and non-adherent lymphokine-activated killer cells after culture in interleukin-2.
    Akporiaye ET; Barbieri CA; Stewart CC; Bender JG
    J Leukoc Biol; 1991 Feb; 49(2):189-96. PubMed ID: 1991999
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor targets stimulate IL-2 activated killer cells to produce interferon-gamma and tumor necrosis factor.
    Chong AS; Scuderi P; Grimes WJ; Hersh EM
    J Immunol; 1989 Mar; 142(6):2133-9. PubMed ID: 2493506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Receptor-specific inhibition of bone marrow erythropoiesis by recombinant DNA-derived interleukin-2.
    Burdach SE; Levitt LJ
    Blood; 1987 May; 69(5):1368-75. PubMed ID: 3105620
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autologous bone marrow purging by in situ IL-2 activation of endogenous killer cells.
    Margolin KA; Wright C; Forman SJ
    Leukemia; 1997 May; 11(5):723-8. PubMed ID: 9180298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. rIL-2-activated killer cell generation is influenced by autologous TNF-alpha production.
    Lange A; Moniewska A; Fetting R; Ernst M; Flad HD
    Nat Immun; 1995; 14(1):2-10. PubMed ID: 7599458
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low molecular weight B-cell growth factor and recombinant interleukin-2 are together able to generate cytotoxic T lymphocytes with LAK activity from the bone marrow cells of children with acute lymphoblastic leukemia.
    Zhou MX; Findley HW; Ragab AH
    Blood; 1989 Sep; 74(4):1355-9. PubMed ID: 2788465
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elevated prostaglandin E2 production by monocytes is responsible for the depressed levels of natural killer and lymphokine-activated killer cell function in patients with breast cancer.
    Baxevanis CN; Reclos GJ; Gritzapis AD; Dedousis GV; Missitzis I; Papamichail M
    Cancer; 1993 Jul; 72(2):491-501. PubMed ID: 8319179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TNF-alpha and IFN-gamma reverse IL-4 inhibition of lymphokine-activated killer cell function.
    Swisher SG; Economou JS; Holmes EC; Golub SH
    Cell Immunol; 1990 Jul; 128(2):450-61. PubMed ID: 2113430
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cytolytic activity of natural killer cells and lymphokine activated killer cells against hepatitis A virus infected fibroblasts.
    Baba M; Hasegawa H; Nakayabu M; Fukai K; Suzuki S
    J Clin Lab Immunol; 1993; 40(2):47-60. PubMed ID: 7932628
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human lymphokine-activated killer (LAK) cells: identification of two types of effector cells.
    Tilden AB; Itoh K; Balch CM
    J Immunol; 1987 Feb; 138(4):1068-73. PubMed ID: 3100627
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytokines alter target cell susceptibility to lysis: I. Evaluation of non-major histocompatibility complex-restricted effectors reveals differential effects on natural and lymphokine-activated killing.
    Wiebke EA; Custer MC; Rosenberg SA; Lotze MT
    J Biol Response Mod; 1990 Apr; 9(2):113-26. PubMed ID: 2111373
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combination of interleukin-2-stimulated lymphocytes and bispecific antibodies that efficiently lyse leukemic cells does not affect bone marrow CD34-positive stem cell function in vitro.
    Kaneko T; Fukuda J; Teramura M; Fusauchi Y; Kakui Y; Okumura K; Mizoguchi H; Oshimi K
    Bone Marrow Transplant; 1994 Aug; 14(2):213-7. PubMed ID: 7527685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.