BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 19040050)

  • 21. Predicting breast cancer survivability: a comparison of three data mining methods.
    Delen D; Walker G; Kadam A
    Artif Intell Med; 2005 Jun; 34(2):113-27. PubMed ID: 15894176
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mortality assessment in intensive care units via adverse events using artificial neural networks.
    Silva A; Cortez P; Santos MF; Gomes L; Neves J
    Artif Intell Med; 2006 Mar; 36(3):223-34. PubMed ID: 16213693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of radiation induced liver disease using artificial neural networks.
    Zhu J; Zhu XD; Liang SX; Xu ZY; Zhao JD; Huang QF; Wang AY; Chen L; Fu XL; Jiang GL
    Jpn J Clin Oncol; 2006 Dec; 36(12):783-8. PubMed ID: 17068085
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of death for extremely low birth weight neonates.
    Ambalavanan N; Carlo WA; Bobashev G; Mathias E; Liu B; Poole K; Fanaroff AA; Stoll BJ; Ehrenkranz R; Wright LL;
    Pediatrics; 2005 Dec; 116(6):1367-73. PubMed ID: 16322160
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial neural networks based prediction of cerebral palsy in infants with central coordination disturbance.
    Lukić S; Ćojbašić Ž; Jović N; Popović M; Bjelaković B; Dimitrijević L; Bjelaković L
    Early Hum Dev; 2012 Jul; 88(7):547-53. PubMed ID: 22281057
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Applying an artificial neural network to predict osteoporosis in the elderly.
    Chiu JS; Li YC; Yu FC; Wang YF
    Stud Health Technol Inform; 2006; 124():609-14. PubMed ID: 17108584
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of risk for cesarean delivery in term nulliparas: a comparison of neural network and multiple logistic regression models.
    Al Housseini A; Newman T; Cox A; Devoe LD
    Am J Obstet Gynecol; 2009 Jul; 201(1):113.e1-6. PubMed ID: 19576377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predicting cardiovascular risk using creatinine clearance and an artificial neural network in primary hypertension.
    Viazzi F; Leoncini G; Sacchi G; Parodi D; Ratto E; Falqui V; Parodi A; Vaccaro V; Tomolillo C; Deferrari G; Pontremoli R
    J Hypertens; 2006 Jul; 24(7):1281-6. PubMed ID: 16794476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Artificial neural network for the joint modelling of discrete cause-specific hazards.
    Biganzoli EM; Boracchi P; Ambrogi F; Marubini E
    Artif Intell Med; 2006 Jun; 37(2):119-30. PubMed ID: 16730963
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Artificial neural networks improve the prediction of Kt/V, follow-up dietary protein intake and hypotension risk in haemodialysis patients.
    Gabutti L; Vadilonga D; Mombelli G; Burnier M; Marone C
    Nephrol Dial Transplant; 2004 May; 19(5):1204-11. PubMed ID: 14993478
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Artificial neural networks as an engine of Internet based hypertension prediction tool.
    Polak S; Mendyk A
    Stud Health Technol Inform; 2004; 103():61-9. PubMed ID: 15747907
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of neural networks for predicting the result of endoscopic treatment for vesico-ureteric reflux.
    Serrano-Durbá A; Serrano AJ; Magdalena JR; Martín JD; Soria E; Domínguez C; Estornell F; García-Ibarra F
    BJU Int; 2004 Jul; 94(1):120-2. PubMed ID: 15217444
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Product unit neural network models for predicting the growth limits of Listeria monocytogenes.
    Valero A; Hervás C; García-Gimeno RM; Zurera G
    Food Microbiol; 2007 Aug; 24(5):452-64. PubMed ID: 17367678
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of human skin permeability using artificial neural network (ANN) modeling.
    Chen LJ; Lian GP; Han LJ
    Acta Pharmacol Sin; 2007 Apr; 28(4):591-600. PubMed ID: 17376301
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-to-event analysis with artificial neural networks: an integrated analytical and rule-based study for breast cancer.
    Lisboa PJ; Etchells TA; Jarman IH; Hane Aung MS; Chabaud S; Bachelot T; Perol D; Gargi T; Bourdès V; Bonnevay S; Négrier S
    Neural Netw; 2008; 21(2-3):414-26. PubMed ID: 18304780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Backfilling missing microbial concentrations in a riverine database using artificial neural networks.
    Chandramouli V; Brion G; Neelakantan TR; Lingireddy S
    Water Res; 2007 Jan; 41(1):217-27. PubMed ID: 17070890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of the concentration of chlorophyll-a for Liuhai urban lakes in Beijing City.
    Zeng Y; Yang ZF; Liu JL
    J Environ Sci (China); 2006; 18(4):827-31. PubMed ID: 17078569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Applying artificial neural networks to the diagnosis of organic dyspepsia.
    García-Altés A; Santín D; Barenys M
    Stat Methods Med Res; 2007 Aug; 16(4):331-46. PubMed ID: 17715160
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prediction of pelvic organ prolapse using an artificial neural network.
    Robinson CJ; Swift S; Johnson DD; Almeida JS
    Am J Obstet Gynecol; 2008 Aug; 199(2):193.e1-6. PubMed ID: 18533119
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of short-term water demand prediction model to Seoul.
    Joo CN; Koo JY; Yu MJ
    Water Sci Technol; 2002; 46(6-7):255-61. PubMed ID: 12380999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.