These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 19040219)

  • 1. "Lock-and-key" geometry effect of patterned surfaces: wettability and switching of adhesive force.
    Huang XJ; Kim DH; Im M; Lee JH; Yoon JB; Choi YK
    Small; 2009 Jan; 5(1):90-4. PubMed ID: 19040219
    [No Abstract]   [Full Text] [Related]  

  • 2. Photoreactive coating for high-contrast spatial patterning of microfluidic device wettability.
    Abate AR; Krummel AT; Lee D; Marquez M; Holtze C; Weitz DA
    Lab Chip; 2008 Dec; 8(12):2157-60. PubMed ID: 19023480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BHK cells behaviour on laser treated polydimethylsiloxane surface.
    Khorasani MT; Mirzadeh H
    Colloids Surf B Biointerfaces; 2004 May; 35(1):67-71. PubMed ID: 15261058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topography printing to locally control wettability.
    Zheng Z; Azzaroni O; Zhou F; Huck WT
    J Am Chem Soc; 2006 Jun; 128(24):7730-1. PubMed ID: 16771474
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal/plasma-driven reversible wettability switching of a bare gold film on a poly(dimethylsiloxane) surface by electroless plating.
    Wu J; Bai HJ; Zhang XB; Xu JJ; Chen HY
    Langmuir; 2010 Jan; 26(2):1191-8. PubMed ID: 19722553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces.
    Cortese B; D'Amone S; Manca M; Viola I; Cingolani R; Gigli G
    Langmuir; 2008 Mar; 24(6):2712-8. PubMed ID: 18217778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wetting transition and optimal design for microstructured surfaces with hydrophobic and hydrophilic materials.
    Park CI; Jeong HE; Lee SH; Cho HS; Suh KY
    J Colloid Interface Sci; 2009 Aug; 336(1):298-303. PubMed ID: 19426991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable adhesive superhydrophobic surfaces based on PDMS microwell arrays.
    Yong J; Chen F; Yang Q; Zhang D; Bian H; Du G; Si J; Meng X; Hou X
    Langmuir; 2013 Mar; 29(10):3274-9. PubMed ID: 23391207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic nanopatterning on a flexible gas barrier film by using a poly(dimethylsiloxane) elastomer.
    Choi JH; Kim YM; Park YW; Park TH; Dong KY; Ju BK
    Nanotechnology; 2009 Apr; 20(13):135303. PubMed ID: 19420494
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Friction enhancement via micro-patterned wet elastomer adhesives on small intestinal surfaces.
    Kwon J; Cheung E; Park S; Sitti M
    Biomed Mater; 2006 Dec; 1(4):216-20. PubMed ID: 18458409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered antifouling microtopographies--correlating wettability with cell attachment.
    Carman ML; Estes TG; Feinberg AW; Schumacher JF; Wilkerson W; Wilson LH; Callow ME; Callow JA; Brennan AB
    Biofouling; 2006; 22(1-2):11-21. PubMed ID: 16551557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple fabrication route to a highly transparent super-hydrophobic surface with a poly(dimethylsiloxane) coated flexible mold.
    Kim M; Kim K; Lee NY; Shin K; Kim YS
    Chem Commun (Camb); 2007 Jun; (22):2237-9. PubMed ID: 17534502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-charge lithography for direct PDMS micro-patterning.
    Grilli S; Vespini V; Ferraro P
    Langmuir; 2008 Dec; 24(23):13262-5. PubMed ID: 18986187
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intelligent control of surface hydrophobicity.
    Gras SL; Mahmud T; Rosengarten G; Mitchell A; Kalantar-Zadeh K
    Chemphyschem; 2007 Oct; 8(14):2036-50. PubMed ID: 17722220
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Petal effect: a superhydrophobic state with high adhesive force.
    Feng L; Zhang Y; Xi J; Zhu Y; Wang N; Xia F; Jiang L
    Langmuir; 2008 Apr; 24(8):4114-9. PubMed ID: 18312016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering transfer of micro- and nanometer-scale features by surface energy modification.
    Cortese B; Piliego C; Viola I; D'Amone S; Cingolani R; Gigli G
    Langmuir; 2009 Jun; 25(12):7025-31. PubMed ID: 19405480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes.
    Gugliuzza A; Aceto MC; Macedonio F; Drioli E
    J Phys Chem B; 2008 Aug; 112(34):10483-96. PubMed ID: 18680362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological investigations of cells that adhered to the irregular patterned polydimethylsiloxane (PDMS) surface without reagents.
    Chung SH; Min J
    Ultramicroscopy; 2009 Jul; 109(8):861-7. PubMed ID: 19427124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of dental rotary instruments on the roughness and wettability of human dentin surfaces.
    Ayad MF; Johnston WM; Rosenstiel SF
    J Prosthet Dent; 2009 Aug; 102(2):81-8. PubMed ID: 19643221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water repellency on a fluorine-containing polyurethane surface: toward understanding the surface self-cleaning effect.
    Wu W; Zhu Q; Qing F; Han CC
    Langmuir; 2009 Jan; 25(1):17-20. PubMed ID: 19053621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.