These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 19040376)
1. Interaction of safranal and picrocrocin with ctDNA and their preferential mechanisms of binding to GC- and AT-rich oligonucleotides. Hoshyar R; Bathaie SZ; Ashrafi M DNA Cell Biol; 2008 Dec; 27(12):665-73. PubMed ID: 19040376 [TBL] [Abstract][Full Text] [Related]
2. Interaction of saffron carotenoids as anticancer compounds with ctDNA, Oligo (dG.dC)15, and Oligo (dA.dT)15. Bathaie SZ; Bolhasani A; Hoshyar R; Ranjbar B; Sabouni F; Moosavi-Movahedi AA DNA Cell Biol; 2007 Aug; 26(8):533-40. PubMed ID: 17688404 [TBL] [Abstract][Full Text] [Related]
3. UGT709G1: a novel uridine diphosphate glycosyltransferase involved in the biosynthesis of picrocrocin, the precursor of safranal in saffron (Crocus sativus). Diretto G; Ahrazem O; Rubio-Moraga Á; Fiore A; Sevi F; Argandoña J; Gómez-Gómez L New Phytol; 2019 Oct; 224(2):725-740. PubMed ID: 31356694 [TBL] [Abstract][Full Text] [Related]
4. Characterisation of secondary metabolites in saffron from central Italy (Cascia, Umbria). Cossignani L; Urbani E; Simonetti MS; Maurizi A; Chiesi C; Blasi F Food Chem; 2014 Jan; 143():446-51. PubMed ID: 24054265 [TBL] [Abstract][Full Text] [Related]
5. Effect of split foliar fertilisation on the quality and quantity of active constituents in saffron (Crocus sativus L.). Rabani-Foroutagheh M; Hamidoghli Y; Mohajeri SA J Sci Food Agric; 2014 Jul; 94(9):1872-8. PubMed ID: 24288269 [TBL] [Abstract][Full Text] [Related]
6. An overview of structural features of DNA and RNA complexes with saffron compounds: Models and antioxidant activity. Kanakis CD; Tarantilis PA; Pappas C; Bariyanga J; Tajmir-Riahi HA; Polissiou MG J Photochem Photobiol B; 2009 Jun; 95(3):204-12. PubMed ID: 19395270 [TBL] [Abstract][Full Text] [Related]
7. Picrocrocin kinetics in aqueous saffron spice extracts (Crocus sativus L.) upon thermal treatment. Sánchez AM; Carmona M; Jarén-Galán M; Mosquera MI; Alonso GL J Agric Food Chem; 2011 Jan; 59(1):249-55. PubMed ID: 21141822 [TBL] [Abstract][Full Text] [Related]
9. Cellular Transport and Bioactivity of a Major Saffron Apocarotenoid, Picrocrocin (4-(β-D-Glucopyranosyloxy)-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde). Kyriakoudi A; O'Callaghan YC; Galvin K; Tsimidou MZ; O'Brien NM J Agric Food Chem; 2015 Oct; 63(39):8662-8. PubMed ID: 26340688 [TBL] [Abstract][Full Text] [Related]
10. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Escribano J; Alonso GL; Coca-Prados M; Fernandez JA Cancer Lett; 1996 Feb; 100(1-2):23-30. PubMed ID: 8620447 [TBL] [Abstract][Full Text] [Related]
11. Quantification of crocin, picrocrocin and safranal in saffron stigmas obtained from sounded corms with acoustic waves. Razavizadeh BM; Arabshahi Delooei N Phytochem Anal; 2021 Nov; 32(6):1059-1066. PubMed ID: 33884676 [TBL] [Abstract][Full Text] [Related]
12. DNA interaction with saffron's secondary metabolites safranal, crocetin, and dimethylcrocetin. Kanakis CD; Tarantilis PA; Tajmir-Riahi HA; Polissiou MG DNA Cell Biol; 2007 Jan; 26(1):63-70. PubMed ID: 17263598 [TBL] [Abstract][Full Text] [Related]
13. The effect of salt stress on the production of apocarotenoids and the expression of genes related to their biosynthesis in saffron. Moslemi FS; Vaziri A; Sharifi G; Gharechahi J Mol Biol Rep; 2021 Feb; 48(2):1707-1715. PubMed ID: 33611780 [TBL] [Abstract][Full Text] [Related]
14. Interaction between the antioxidant compound safranal and α-chymotrypsin in spectroscopic fields and molecular modeling approaches. Zohreh Vahedi S; Farhadian S; Shareghi B; Asgharzadeh S J Biomol Struct Dyn; 2024 May; 42(8):4097-4109. PubMed ID: 37969053 [TBL] [Abstract][Full Text] [Related]
15. Comparative evaluation of an ISO 3632 method and an HPLC-DAD method for safranal quantity determination in saffron. García-Rodríguez MV; López-Córcoles H; Alonso GL; Pappas CS; Polissiou MG; Tarantilis PA Food Chem; 2017 Apr; 221():838-843. PubMed ID: 27979282 [TBL] [Abstract][Full Text] [Related]
16. Separation of picrocrocin, cis-trans-crocins and safranal of saffron using high-performance liquid chromatography with photodiode-array detection. Tarantilis PA; Polissiou M; Manfait M J Chromatogr A; 1994 Mar; 664(1):55-61. PubMed ID: 8012549 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic studies of the interaction of aspirin and its important metabolite, salicylate ion, with DNA, A·T and G·C rich sequences. Bathaie SZ; Nikfarjam L; Rahmanpour R; Moosavi-Movahedi AA Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):1077-83. PubMed ID: 20869297 [TBL] [Abstract][Full Text] [Related]
19. Application of the relative molar sensitivity method using GC-FID to quantify safranal in saffron (Crocus sativus L.). Masumoto N; Ohno T; Suzuki T; Togawa T; Sugimoto N J Nat Med; 2023 Sep; 77(4):829-838. PubMed ID: 37450205 [TBL] [Abstract][Full Text] [Related]
20. Inhibitory effects of four active components in saffron on human ether-a-go-go-related gene (hERG) K+ currents. Jin W; Xue Y; Xue Y; Liang Y; Zhang Y; Zhang J; Chu X; Wang H; Guan S Gen Physiol Biophys; 2020 Sep; 39(5):491-498. PubMed ID: 33084602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]