BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 19040451)

  • 1. Species-sorting may explain an apparent minimal effect of immigration on freshwater bacterial community dynamics.
    Jones SE; McMahon KD
    Environ Microbiol; 2009 Apr; 11(4):905-13. PubMed ID: 19040451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of primer sets for use in automated ribosomal intergenic spacer analysis of aquatic bacterial communities: an ecological perspective.
    Jones SE; Shade AL; McMahon KD; Kent AD
    Appl Environ Microbiol; 2007 Jan; 73(2):659-62. PubMed ID: 17122397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenology of high-elevation pelagic bacteria: the roles of meteorologic variability, catchment inputs and thermal stratification in structuring communities.
    Nelson CE
    ISME J; 2009 Jan; 3(1):13-30. PubMed ID: 18784755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature controls on aquatic bacterial production and community dynamics in arctic lakes and streams.
    Adams HE; Crump BC; Kling GW
    Environ Microbiol; 2010 May; 12(5):1319-33. PubMed ID: 20192972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Succession of bacterial community composition over two consecutive years in two aquatic systems: a natural lake and a lake-reservoir.
    Boucher D; Jardillier L; Debroas D
    FEMS Microbiol Ecol; 2006 Jan; 55(1):79-97. PubMed ID: 16420617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Viability and potential for immigration of airborne bacteria from Africa that reach high mountain lakes in Europe.
    Hervàs A; Camarero L; Reche I; Casamayor EO
    Environ Microbiol; 2009 Jun; 11(6):1612-23. PubMed ID: 19453609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics.
    Shade A; Jones SE; McMahon KD
    Environ Microbiol; 2008 Apr; 10(4):1057-67. PubMed ID: 18218031
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments.
    Danovaro R; Luna GM; Dell'anno A; Pietrangeli B
    Appl Environ Microbiol; 2006 Sep; 72(9):5982-9. PubMed ID: 16957219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial and temporal heterogeneity of the bacterial communities in stream epilithic biofilms.
    Lear G; Anderson MJ; Smith JP; Boxen K; Lewis GD
    FEMS Microbiol Ecol; 2008 Sep; 65(3):463-73. PubMed ID: 18637965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential bacterial dynamics promote emergent community robustness to lake mixing: an epilimnion to hypolimnion transplant experiment.
    Shade A; Chiu CY; McMahon KD
    Environ Microbiol; 2010 Feb; 12(2):455-66. PubMed ID: 19878266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for structuring of bacterial community composition by organic carbon source in temperate lakes.
    Jones SE; Newton RJ; McMahon KD
    Environ Microbiol; 2009 Sep; 11(9):2463-72. PubMed ID: 19558514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of environmental factors on couplings between bacterial community composition and ectoenzymatic activities in a lacustrine ecosystem.
    Boucher D; Debroas D
    FEMS Microbiol Ecol; 2009 Oct; 70(1):66-78. PubMed ID: 19622070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined use of 16S ribosomal DNA and automated ribosomal intergenic spacer analysis to study the bacterial community in catfish ponds.
    Arias CR; Abernathy JW; Liu Z
    Lett Appl Microbiol; 2006 Sep; 43(3):287-92. PubMed ID: 16910933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High similarity between bacterioneuston and airborne bacterial community compositions in a high mountain lake area.
    Hervas A; Casamayor EO
    FEMS Microbiol Ecol; 2009 Feb; 67(2):219-28. PubMed ID: 19049500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental manipulations of microbial food web interactions in a humic lake: shifting biological drivers of bacterial community structure.
    Kent AD; Jones SE; Lauster GH; Graham JM; Newton RJ; McMahon KD
    Environ Microbiol; 2006 Aug; 8(8):1448-59. PubMed ID: 16872407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time- and sediment depth-related variations in bacterial diversity and community structure in subtidal sands.
    Böer SI; Hedtkamp SI; van Beusekom JE; Fuhrman JA; Boetius A; Ramette A
    ISME J; 2009 Jul; 3(7):780-91. PubMed ID: 19340087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of dissolved organic matter source on lake bacterioplankton structure and function--implications for seasonal dynamics of community composition.
    Kritzberg ES; Langenheder S; Lindström ES
    FEMS Microbiol Ecol; 2006 Jun; 56(3):406-17. PubMed ID: 16689873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems.
    Humbert JF; Dorigo U; Cecchi P; Le Berre B; Debroas D; Bouvy M
    Environ Microbiol; 2009 Sep; 11(9):2339-50. PubMed ID: 19508336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The phylogeography of Adelie penguin faecal flora.
    Banks JC; Cary SC; Hogg ID
    Environ Microbiol; 2009 Mar; 11(3):577-88. PubMed ID: 19040454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Links between bacterial production, amino-acid utilization and community composition in productive lakes.
    Bertilsson S; Eiler A; Nordqvist A; Jørgensen NO
    ISME J; 2007 Oct; 1(6):532-44. PubMed ID: 18043654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.