These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19040702)

  • 1. Microbial nitrilases: versatile, spiral forming, industrial enzymes.
    Thuku RN; Brady D; Benedik MJ; Sewell BT
    J Appl Microbiol; 2009 Mar; 106(3):703-27. PubMed ID: 19040702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomeric structure of nitrilases: effect of mutating interfacial residues on activity.
    Sewell BT; Thuku RN; Zhang X; Benedik MJ
    Ann N Y Acad Sci; 2005 Nov; 1056():153-9. PubMed ID: 16387684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-translational cleavage of recombinantly expressed nitrilase from Rhodococcus rhodochrous J1 yields a stable, active helical form.
    Thuku RN; Weber BW; Varsani A; Sewell BT
    FEBS J; 2007 Apr; 274(8):2099-108. PubMed ID: 17371547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The crystal structure of beta-alanine synthase from Drosophila melanogaster reveals a homooctameric helical turn-like assembly.
    Lundgren S; Lohkamp B; Andersen B; Piskur J; Dobritzsch D
    J Mol Biol; 2008 Apr; 377(5):1544-59. PubMed ID: 18336837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10.
    Liu ZQ; Dong LZ; Cheng F; Xue YP; Wang YS; Ding JN; Zheng YG; Shen YC
    J Agric Food Chem; 2011 Nov; 59(21):11560-70. PubMed ID: 21913706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
    Kiziak C; Klein J; Stolz A
    Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene cloning, overexpression, and characterization of the nitrilase from Rhodococcus rhodochrous tg1-A6 in E. coli.
    Luo H; Fan L; Chang Y; Ma J; Yu H; Shen Z
    Appl Biochem Biotechnol; 2010 Jan; 160(2):393-400. PubMed ID: 18677653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotransformations with nitrilases.
    Martínková L; Kren V
    Curr Opin Chem Biol; 2010 Apr; 14(2):130-7. PubMed ID: 20083424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5.
    Kim JS; Tiwari MK; Moon HJ; Jeya M; Ramu T; Oh DK; Kim IW; Lee JK
    Appl Microbiol Biotechnol; 2009 May; 83(2):273-83. PubMed ID: 19153727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrilase and its application as a 'green' catalyst.
    Singh R; Sharma R; Tewari N; ; Rawat DS
    Chem Biodivers; 2006 Dec; 3(12):1279-87. PubMed ID: 17193242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances and challenges in the heterologous production of microbial nitrilases for biocatalytic applications.
    Martínková L; Rucká L; Nešvera J; Pátek M
    World J Microbiol Biotechnol; 2017 Jan; 33(1):8. PubMed ID: 27858339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles.
    Bayer S; Birkemeyer C; Ballschmiter M
    Appl Microbiol Biotechnol; 2011 Jan; 89(1):91-8. PubMed ID: 20725724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new family of carbon-nitrogen hydrolases.
    Bork P; Koonin EV
    Protein Sci; 1994 Aug; 3(8):1344-6. PubMed ID: 7987228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cryo-EM structure of bacterial nitrilase reveals insight into oligomerization, substrate recognition, and catalysis.
    Aguirre-Sampieri S; Casañal A; Emsley P; Garza-Ramos G
    J Struct Biol; 2024 Jun; 216(2):108093. PubMed ID: 38615726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalysis in the nitrilase superfamily.
    Brenner C
    Curr Opin Struct Biol; 2002 Dec; 12(6):775-82. PubMed ID: 12504683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of nitrilase and nitrile hydratase biocatalytic systems.
    Brady D; Beeton A; Zeevaart J; Kgaje C; van Rantwijk F; Sheldon RA
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):76-85. PubMed ID: 14666389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyanide bioremediation: the potential of engineered nitrilases.
    Park JM; Trevor Sewell B; Benedik MJ
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3029-3042. PubMed ID: 28265723
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maximizing the potential of nitrilase: Unveiling their diversity, catalytic proficiency, and versatile applications.
    Zhou SP; Xue YP; Zheng YG
    Biotechnol Adv; 2024; 72():108352. PubMed ID: 38574900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of an aliphatic amidase from Geobacillus pallidus RAPc8.
    Kimani SW; Agarkar VB; Cowan DA; Sayed MF; Sewell BT
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1048-58. PubMed ID: 17881822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrilase: a promising biocatalyst in industrial applications for green chemistry.
    Shen JD; Cai X; Liu ZQ; Zheng YG
    Crit Rev Biotechnol; 2021 Feb; 41(1):72-93. PubMed ID: 33045860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.