These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19040720)

  • 1. Chromatin Central: towards the comparative proteome by accurate mapping of the yeast proteomic environment.
    Shevchenko A; Roguev A; Schaft D; Buchanan L; Habermann B; Sakalar C; Thomas H; Krogan NJ; Shevchenko A; Stewart AF
    Genome Biol; 2008; 9(11):R167. PubMed ID: 19040720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative analysis of an orthologous proteomic environment in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Roguev A; Shevchenko A; Schaft D; Thomas H; Stewart AF; Shevchenko A
    Mol Cell Proteomics; 2004 Feb; 3(2):125-32. PubMed ID: 14617822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scarless Gene Tagging with One-Step Transformation and Two-Step Selection in Saccharomyces cerevisiae and Schizosaccharomyces pombe.
    Landgraf D; Huh D; Hallacli E; Lindquist S
    PLoS One; 2016; 11(10):e0163950. PubMed ID: 27736907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitope tagging and visualization of nuclear-encoded mitochondrial proteins in yeast.
    Nowakowski DW; Swayne TC; Pon LA
    Methods Cell Biol; 2001; 65():257-76. PubMed ID: 11381598
    [No Abstract]   [Full Text] [Related]  

  • 5. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast.
    Graumann J; Dunipace LA; Seol JH; McDonald WH; Yates JR; Wold BJ; Deshaies RJ
    Mol Cell Proteomics; 2004 Mar; 3(3):226-37. PubMed ID: 14660704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparative study of the proteome regulated by the Rpb4 and Rpb7 subunits of RNA polymerase II in fission yeast.
    Kumar D; Varshney S; Sengupta S; Sharma N
    J Proteomics; 2019 May; 199():77-88. PubMed ID: 30862564
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe.
    Schmidt MW; Houseman A; Ivanov AR; Wolf DA
    Mol Syst Biol; 2007; 3():79. PubMed ID: 17299416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteome of baker's yeast mitochondria.
    Gonczarowska-Jorge H; Zahedi RP; Sickmann A
    Mitochondrion; 2017 Mar; 33():15-21. PubMed ID: 27535110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic computational and experimental proteomics approaches for more accurate detection of active serine hydrolases in yeast.
    Baxter SM; Rosenblum JS; Knutson S; Nelson MR; Montimurro JS; Di Gennaro JA; Speir JA; Burbaum JJ; Fetrow JS
    Mol Cell Proteomics; 2004 Mar; 3(3):209-25. PubMed ID: 14645503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes.
    Yoon HJ; Feoktistova A; Wolfe BA; Jennings JL; Link AJ; Gould KL
    Curr Biol; 2002 Dec; 12(23):2048-54. PubMed ID: 12477395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The essential function of Rrs1 in ribosome biogenesis is conserved in budding and fission yeasts.
    Wan K; Kawara H; Yamamoto T; Kume K; Yabuki Y; Goshima T; Kitamura K; Ueno M; Kanai M; Hirata D; Funato K; Mizuta K
    Yeast; 2015 Sep; 32(9):607-14. PubMed ID: 26122634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic study for the cellular responses to Cd2+ in Schizosaccharomyces pombe through amino acid-coded mass tagging and liquid chromatography tandem mass spectrometry.
    Bae W; Chen X
    Mol Cell Proteomics; 2004 Jun; 3(6):596-607. PubMed ID: 15004206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome response of two natural strains of Saccharomyces cerevisiae with divergent lignocellulosic inhibitor stress tolerance.
    de Witt RN; Kroukamp H; Volschenk H
    FEMS Yeast Res; 2019 Jan; 19(1):. PubMed ID: 30371771
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The protein and neutral lipid composition of lipid droplets isolated from the fission yeast, Schizosaccharomyces pombe.
    Meyers A; Chourey K; Weiskittel TM; Pfiffner S; Dunlap JR; Hettich RL; Dalhaimer P
    J Microbiol; 2017 Feb; 55(2):112-122. PubMed ID: 28120187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2nSILAC for Quantitative Proteomics of Prototrophic Baker's Yeast.
    Dannenmaier S; Oeljeklaus S; Warscheid B
    Methods Mol Biol; 2021; 2228():253-270. PubMed ID: 33950496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome analysis of Schizosaccharomyces pombe by two-dimensional gel electrophoresis and mass spectrometry.
    Hwang KH; Carapito C; Böhmer S; Leize E; Van Dorsselaer A; Bernhardt R
    Proteomics; 2006 Jul; 6(14):4115-29. PubMed ID: 16791824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiplexed proteome profiling of carbon source perturbations in two yeast species with SL-SP3-TMT.
    Paulo JA; Navarrete-Perea J; Gygi SP
    J Proteomics; 2020 Jan; 210():103531. PubMed ID: 31626996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative proteomic analysis of the Saccharomyces cerevisiae industrial strains CAT-1 and PE-2.
    Santos RM; Nogueira FC; Brasil AA; Carvalho PC; Leprevost FV; Domont GB; Eleutherio EC
    J Proteomics; 2017 Jan; 151():114-121. PubMed ID: 27576599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of chromatin in fission yeast.
    Pidoux A; Mellone B; Allshire R
    Methods; 2004 Jul; 33(3):252-9. PubMed ID: 15157893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conserved abundance and topological features in chromatin-remodeling protein interaction networks.
    Sardiu ME; Gilmore JM; Groppe BD; Herman D; Ramisetty SR; Cai Y; Jin J; Conaway RC; Conaway JW; Florens L; Washburn MP
    EMBO Rep; 2015 Jan; 16(1):116-26. PubMed ID: 25427557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.