These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 190411)

  • 1. Inhibition of glycolysis and interference with protein synthesis in hepatoma cells.
    Ferrero ME; Ferrero E; Bernelli-Zazzera A
    J Natl Cancer Inst; 1977 Mar; 58(3):645-50. PubMed ID: 190411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ATP level and control of glycolysis in Novikoff ascites-hepatoma cells.
    Nigam VN
    Enzymologia; 1969; 36(4):257-68. PubMed ID: 4306660
    [No Abstract]   [Full Text] [Related]  

  • 3. Synthesis of alpha-fetoprotein by membrane-bound polysomes of rat ascites hepatoma cells.
    Kanai K; Endo Y; Oda T; Tanaka N
    Cancer Res; 1974 Aug; 34(8):1813-5. PubMed ID: 4366502
    [No Abstract]   [Full Text] [Related]  

  • 4. 2-Deoxy-D-galactose metabolism in ascites hepatoma cells results in phosphate trapping and glycolysis inhibition.
    Smith DF; Keppler DO
    Eur J Biochem; 1977 Feb; 73(1):83-92. PubMed ID: 190012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of aliphatic aldehyde metabolism on protein synthesis and thiol compounds in rat liver and hepatoma induced by 4-dimethylaminoazobenzene.
    Sessa A; Scalabrino G; Arnaboldi A; Perin A
    Cancer Res; 1977 Jul; 37(7 Pt 1):2170-6. PubMed ID: 193635
    [No Abstract]   [Full Text] [Related]  

  • 6. [RNA biosynthesis in the ascitic cells of Ehrlich's carcinoma and Zajdela's hepatoma under conditions of blocked oxidative phosphorylation].
    Shilov LA
    Vopr Onkol; 1977; 23(9):55-9. PubMed ID: 198951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of energy deprivation on the polyribosomes of Yoshida ascites hepatoma cells.
    Ferrero ME; Bernelli-Zazzera A
    Cancer Biochem Biophys; 1983; 6(4):229-36. PubMed ID: 6616429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in glycolytic capacity and hypoxia tolerance between hepatoma cells and hepatocytes.
    Hugo-Wissemann D; Anundi I; Lauchart W; Viebahn R; de Groot H
    Hepatology; 1991 Feb; 13(2):297-303. PubMed ID: 1847350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of proteins of ribosomal subunits and nucleolar preribosomal particles from Novikoff hepatoma ascites cells by two-dimensional polyacrylamide gel electrophoresis.
    Prestayko AW; Klomp GR; Schmoll DJ; Busch H
    Biochemistry; 1974 Apr; 13(9):1945-51. PubMed ID: 4366268
    [No Abstract]   [Full Text] [Related]  

  • 10. Synthesis of alpha-fetoprotein by rat ascites hepatoma cells.
    Kanai K; Endo Y; Oda T; Kaneko Y
    Ann N Y Acad Sci; 1975 Aug; 259():29-36. PubMed ID: 54030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The control of anaerobic glycolysis by glucose transport and ouabain in slices of hepatoma 3924A.
    van Rossum GD; Galeotti T; Palombini G; Morris HP
    Biochim Biophys Acta; 1975 Jun; 394(2):267-80. PubMed ID: 166693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis in vitro of aldolase A by polysomes or mRNA of rat ascites hepatoma AH 7974 cells.
    Sakiyama S; Yoda K; Fujimura S
    Biochem Biophys Res Commun; 1976 Oct; 72(4):1271-7. PubMed ID: 187182
    [No Abstract]   [Full Text] [Related]  

  • 13. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase.
    Bustamante E; Pedersen PL
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3735-9. PubMed ID: 198801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of glycolysis by phosphofructokinase in slices of rat liver, Novikoff hepatoma, and adenocarcinomas.
    Wu R
    Biochem Biophys Res Commun; 1964; 14():79-85. PubMed ID: 4284349
    [No Abstract]   [Full Text] [Related]  

  • 15. Alanosine toxicity in Novikoff rat hepatoma cells due to inhibition of the conversion of inosine monophosphate to adenosine monophosphate.
    Graff JC; Plagemann PG
    Cancer Res; 1976 Apr; 36(4):1428-40. PubMed ID: 177207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of Na+ and K+ transport with aerobic energy metabolism in slices of Morris hepatoma 3924A.
    Galeotti T; van Rossum GD; Russo MA; Palombini G
    Cancer Res; 1976 Nov; 36(11 Pt 1):4175-84. PubMed ID: 184927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anaerobic glycolysis in spontaneous and transplanted liver tumors of mice.
    Woods MW; Vlahakis G
    J Natl Cancer Inst; 1973 Jun; 50(6):1497-511. PubMed ID: 4352201
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of agouti-related peptide expression by glucose in a clonal hypothalamic neuronal cell line is mediated by glycolysis, not oxidative phosphorylation.
    Cheng H; Isoda F; Belsham DD; Mobbs CV
    Endocrinology; 2008 Feb; 149(2):703-10. PubMed ID: 17974626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of N-methyl-N-nitrosourea on the protein-synthesizing system in mouse liver and hepatoma 22a cells.
    Abakumova OY; Ugarova TY; Gorbacheva LB; Kucenco NG; Pilipenco NN; Sokolova IS; Lerman MI
    Cancer Res; 1974 Jul; 34(7):1542-7. PubMed ID: 4365229
    [No Abstract]   [Full Text] [Related]  

  • 20. Studies of initiation factors in protein synthesis of host liver and transplantable hepatoma.
    Murty CN; Verney E; Sidransky H
    Cancer Res; 1974 Feb; 34(2):410-8. PubMed ID: 4359382
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.