BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 1904121)

  • 21. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.
    Sabina RL; Swain JL; Olanow CW; Bradley WG; Fishbein WN; DiMauro S; Holmes EW
    J Clin Invest; 1984 Mar; 73(3):720-30. PubMed ID: 6707201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. O2 uptake kinetics in response to exercise. A measure of tissue anaerobiosis in heart failure.
    Zhang YY; Wasserman K; Sietsema KE; Ben-Dov I; Barstow TJ; Mizumoto G; Sullivan CS
    Chest; 1993 Mar; 103(3):735-41. PubMed ID: 8449060
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myoadenylate deaminase deficiency: inherited and acquired forms.
    Fishbein WN
    Biochem Med; 1985 Apr; 33(2):158-69. PubMed ID: 4004819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exertional myalgia syndrome associated with diminished serum ammonia elevation in ischemic exercise testing.
    Riggs JE; Schochet SS; Webb RW
    Mil Med; 1999 Sep; 164(9):663-5. PubMed ID: 10495640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exercising muscle does not produce hypoxanthine in adenylate deaminase deficiency.
    Patterson VH; Kaiser KK; Brooke MH
    Neurology; 1983 Jun; 33(6):784-6. PubMed ID: 6682523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ammonia response to exercise in patients with congestive heart failure.
    Ogino K; Osaki S; Kitamura H; Noguchi N; Hisatome I; Matsumoto T; Omodani H; Kato M; Kinugawa T; Miyakoda H; Kotake H; Mashiba H
    Heart; 1996 Apr; 75(4):343-8. PubMed ID: 8705758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ammonia response to constant exercise: differences to the lactate response.
    Ogino K; Kinugawa T; Osaki S; Kato M; Endoh A; Furuse Y; Uchida K; Shimoyama M; Igawa O; Hisatome I; Shigemasa C
    Clin Exp Pharmacol Physiol; 2000 Aug; 27(8):612-7. PubMed ID: 10901391
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Excess purine degradation in exercising muscles of patients with glycogen storage disease types V and VII.
    Mineo I; Kono N; Shimizu T; Hara N; Yamada Y; Sumi S; Nonaka K; Tarui S
    J Clin Invest; 1985 Aug; 76(2):556-60. PubMed ID: 3861621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Mechanism of exercise-induced hyperuricemia].
    Hadano S; Ogasawara M; Ito A
    Nihon Seirigaku Zasshi; 1987; 49(5):151-9. PubMed ID: 3681743
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of oral D-ribose supplementation on anaerobic capacity and selected metabolic markers in healthy males.
    Kreider RB; Melton C; Greenwood M; Rasmussen C; Lundberg J; Earnest C; Almada A
    Int J Sport Nutr Exerc Metab; 2003 Mar; 13(1):76-86. PubMed ID: 12660407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of the metabolic compensation after treadmill test in patients with peripheral occlusive arterial disease.
    Duprez D; De Buyzere M; Van Wassenhove A; Clement D
    Angiology; 1992 Feb; 43(2):126-33. PubMed ID: 1536473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diagnostic Algorithm for Glycogenoses and Myoadenylate Deaminase Deficiency Based on Exercise Testing Parameters: A Prospective Study.
    Rannou F; Uguen A; Scotet V; Le Maréchal C; Rigal O; Marcorelles P; Gobin E; Carré JL; Zagnoli F; Giroux-Metges MA
    PLoS One; 2015; 10(7):e0132972. PubMed ID: 26207760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Biochemical modifications in stress ischemia of the calf muscles].
    Rexroth W; Hild R
    Vasa Suppl; 1991; 32():562-71. PubMed ID: 1771582
    [No Abstract]   [Full Text] [Related]  

  • 34. Myoadenylate deaminase deficiency. A common inherited defect with heterogeneous clinical presentation.
    Sabina RL
    Neurol Clin; 2000 Feb; 18(1):185-94. PubMed ID: 10658174
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Influence of an ergometer load after intravenous lipofundin infusion on the behaviour of blood glucose, lactate, amino acid nitrogen and the free fatty acids (author's transl)].
    Cholewa M; Jazdzewski B; Markiewicz K; Zach E
    Dtsch Z Verdau Stoffwechselkr; 1982; 42(2-3):99-107. PubMed ID: 7106043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of ribose supplementation on selected metabolic measurements and performance in maximally exercising Thoroughbreds.
    Kavazis AN; Kivipelto J; Choe HS; Colahan PT; Ott EA
    J Anim Sci; 2004 Feb; 82(2):619-25. PubMed ID: 14974563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Change in Lactate, Ammonia, and Hypoxanthine Concentrations in a 1-Year Training Cycle in Highly Trained Athletes: Applying Biomarkers as Tools to Assess Training Status.
    Włodarczyk M; Kusy K; Słomińska E; Krasiński Z; Zieliński J
    J Strength Cond Res; 2020 Feb; 34(2):355-364. PubMed ID: 31469767
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metabolic response to standardised exercise test in standardbred trotters with red cell hypervolaemia.
    Pösö AR; Essén-Gustavsson B; Persson SG
    Equine Vet J; 1993 Nov; 25(6):527-31. PubMed ID: 8276001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of the effects of pre-exercise feeding of glucose, glycerol and placebo on endurance and fuel homeostasis in man.
    Gleeson M; Maughan RJ; Greenhaff PL
    Eur J Appl Physiol Occup Physiol; 1986; 55(6):645-53. PubMed ID: 3536495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy economy in the pregnant human uterus at term: studies on arteriovenous differences in metabolites of carbohydrate, fat and nucleotides.
    Steingrímsdóttir T; Ronquist G; Ulmsten U
    Eur J Obstet Gynecol Reprod Biol; 1993 Oct; 51(3):209-15. PubMed ID: 8288017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.