BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 19041375)

  • 1. Postsynaptic mechanisms of excitotoxicity: Involvement of postsynaptic density proteins, radicals, and oxidant molecules.
    Forder JP; Tymianski M
    Neuroscience; 2009 Jan; 158(1):293-300. PubMed ID: 19041375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMDA receptor-mediated excitotoxic neuronal apoptosis in vitro and in vivo occurs in an ER stress and PUMA independent manner.
    Concannon CG; Ward MW; Bonner HP; Kuroki K; Tuffy LP; Bonner CT; Woods I; Engel T; Henshall DC; Prehn JH
    J Neurochem; 2008 May; 105(3):891-903. PubMed ID: 18088354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NR1 and GluR2 expression mediates excitotoxicity in chronic hypobaric hypoxia.
    Hota SK; Barhwal K; Singh SB; Sairam M; Ilavazhagan G
    J Neurosci Res; 2008 Apr; 86(5):1142-52. PubMed ID: 17969105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protective role of pentobarbital pretreatment for NMDA-R activated lipid peroxidation is derived from the synergistic effect on endogenous anti-oxidant in the hippocampus of rats.
    Ueda Y; Doi T; Nagatomo K; Nakajima A
    Neurosci Lett; 2007 Apr; 417(1):46-9. PubMed ID: 17360116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The enemy at the gates. Ca2+ entry through TRPM7 channels and anoxic neuronal death.
    Nicotera P; Bano D
    Cell; 2003 Dec; 115(7):768-70. PubMed ID: 14697196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting excitotoxic/free radical signaling pathways for therapeutic intervention in glaucoma.
    Seki M; Lipton SA
    Prog Brain Res; 2008; 173():495-510. PubMed ID: 18929130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tex261 modulates the excitotoxic cell death induced by N-methyl-D-aspartate (NMDA) receptor activation.
    Taniura H; Iijima S; Kambe Y; Georgiev D; Yoneda Y
    Biochem Biophys Res Commun; 2007 Nov; 362(4):1096-100. PubMed ID: 17803966
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitotoxicity in neonatal hypoxia.
    Johnston MV
    Ment Retard Dev Disabil Res Rev; 2001; 7(4):229-34. PubMed ID: 11754516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anti-oxidant strategies.
    Buonocore G; Groenendaal F
    Semin Fetal Neonatal Med; 2007 Aug; 12(4):287-95. PubMed ID: 17368122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spare respiratory capacity, oxidative stress and excitotoxicity.
    Nicholls DG
    Biochem Soc Trans; 2009 Dec; 37(Pt 6):1385-8. PubMed ID: 19909281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidative stress and excitotoxicity: a therapeutic issue in multiple sclerosis?
    Gonsette RE
    Mult Scler; 2008 Jan; 14(1):22-34. PubMed ID: 17881394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postsynaptic density-membrane associated guanylate kinase proteins (PSD-MAGUKs) and their role in CNS disorders.
    Gardoni F; Marcello E; Di Luca M
    Neuroscience; 2009 Jan; 158(1):324-33. PubMed ID: 18773944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of excitotoxicity in neurologic diseases.
    Beal MF
    FASEB J; 1992 Dec; 6(15):3338-44. PubMed ID: 1464368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A key role for TRPM7 channels in anoxic neuronal death.
    Aarts M; Iihara K; Wei WL; Xiong ZG; Arundine M; Cerwinski W; MacDonald JF; Tymianski M
    Cell; 2003 Dec; 115(7):863-77. PubMed ID: 14697204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptotagmins in neurodegeneration.
    Glavan G; Schliebs R; Zivin M
    Anat Rec (Hoboken); 2009 Dec; 292(12):1849-62. PubMed ID: 19943339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered expression and phosphorylation of N-methyl-D-aspartate receptors in piglet striatum after hypoxia-ischemia.
    Guerguerian AM; Brambrink AM; Traystman RJ; Huganir RL; Martin LJ
    Brain Res Mol Brain Res; 2002 Jul; 104(1):66-80. PubMed ID: 12117552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease.
    Waxman EA; Lynch DR
    Neuroscientist; 2005 Feb; 11(1):37-49. PubMed ID: 15632277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMDA receptor and neonatal hypoxic brain injury.
    Mishra OP; Fritz KI; Delivoria-Papadopoulos M
    Ment Retard Dev Disabil Res Rev; 2001; 7(4):249-53. PubMed ID: 11754518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity.
    Arundine M; Tymianski M
    Cell Calcium; 2003; 34(4-5):325-37. PubMed ID: 12909079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lysosomal release of cathepsins causes ischemic damage in the rat hippocampal slice and depends on NMDA-mediated calcium influx, arachidonic acid metabolism, and free radical production.
    Windelborn JA; Lipton P
    J Neurochem; 2008 Jul; 106(1):56-69. PubMed ID: 18363826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.