These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 19041879)
1. alphaB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. Jehle S; van Rossum B; Stout JR; Noguchi SM; Falber K; Rehbein K; Oschkinat H; Klevit RE; Rajagopal P J Mol Biol; 2009 Feb; 385(5):1481-97. PubMed ID: 19041879 [TBL] [Abstract][Full Text] [Related]
2. Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Jehle S; Rajagopal P; Bardiaux B; Markovic S; Kühne R; Stout JR; Higman VA; Klevit RE; van Rossum BJ; Oschkinat H Nat Struct Mol Biol; 2010 Sep; 17(9):1037-42. PubMed ID: 20802487 [TBL] [Abstract][Full Text] [Related]
3. N-terminal domain of alphaB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Jehle S; Vollmar BS; Bardiaux B; Dove KK; Rajagopal P; Gonen T; Oschkinat H; Klevit RE Proc Natl Acad Sci U S A; 2011 Apr; 108(16):6409-14. PubMed ID: 21464278 [TBL] [Abstract][Full Text] [Related]
4. The IXI/V motif in the C-terminal extension of alpha-crystallins: alternative interactions and oligomeric assemblies. Pasta SY; Raman B; Ramakrishna T; Rao ChM Mol Vis; 2004 Sep; 10():655-62. PubMed ID: 15448619 [TBL] [Abstract][Full Text] [Related]
5. Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin. Mainz A; Bardiaux B; Kuppler F; Multhaup G; Felli IC; Pierattelli R; Reif B J Biol Chem; 2012 Jan; 287(2):1128-38. PubMed ID: 22090033 [TBL] [Abstract][Full Text] [Related]
6. A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin. Treweek TM; Rekas A; Walker MJ; Carver JA Exp Eye Res; 2010 Nov; 91(5):691-9. PubMed ID: 20732317 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure of R120G disease mutant of human αB-crystallin domain dimer shows closure of a groove. Clark AR; Naylor CE; Bagnéris C; Keep NH; Slingsby C J Mol Biol; 2011 Apr; 408(1):118-34. PubMed ID: 21329698 [TBL] [Abstract][Full Text] [Related]
8. Structural and functional aspects of hetero-oligomers formed by the small heat shock proteins αB-crystallin and HSP27. Aquilina JA; Shrestha S; Morris AM; Ecroyd H J Biol Chem; 2013 May; 288(19):13602-9. PubMed ID: 23532854 [TBL] [Abstract][Full Text] [Related]
9. Characterisation of amyloid fibril formation by small heat-shock chaperone proteins human alphaA-, alphaB- and R120G alphaB-crystallins. Meehan S; Knowles TP; Baldwin AJ; Smith JF; Squires AM; Clements P; Treweek TM; Ecroyd H; Tartaglia GG; Vendruscolo M; Macphee CE; Dobson CM; Carver JA J Mol Biol; 2007 Sep; 372(2):470-84. PubMed ID: 17662998 [TBL] [Abstract][Full Text] [Related]
10. Interactive sequences in the stress protein and molecular chaperone human alphaB crystallin recognize and modulate the assembly of filaments. Ghosh JG; Houck SA; Clark JI Int J Biochem Cell Biol; 2007; 39(10):1804-15. PubMed ID: 17590381 [TBL] [Abstract][Full Text] [Related]
11. AlphaA-crystallin interacting regions in the small heat shock protein, alphaB-crystallin. Sreelakshmi Y; Santhoshkumar P; Bhattacharyya J; Sharma KK Biochemistry; 2004 Dec; 43(50):15785-95. PubMed ID: 15595834 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of Cu2+-mediated generation of reactive oxygen species by the small heat shock protein αB-crystallin: the relative contributions of the N- and C-terminal domains. Prabhu S; Srinivas V; Ramakrishna T; Raman B; Rao ChM Free Radic Biol Med; 2011 Aug; 51(3):755-62. PubMed ID: 21658443 [TBL] [Abstract][Full Text] [Related]
13. Deletion of (54)FLRAPSWF(61) residues decreases the oligomeric size and enhances the chaperone function of alphaB-crystallin. Santhoshkumar P; Murugesan R; Sharma KK Biochemistry; 2009 Jun; 48(23):5066-73. PubMed ID: 19388699 [TBL] [Abstract][Full Text] [Related]
14. A P39R mutation at the N-terminal domain of human αB-crystallin regulates its oligomeric state and chaperone-like activity. Numoto N; Kita A; Fujii N; Miki K Biochem Biophys Res Commun; 2012 Aug; 425(3):601-6. PubMed ID: 22877753 [TBL] [Abstract][Full Text] [Related]
15. Insights into the domains required for dimerization and assembly of human alphaB crystallin. Ghosh JG; Clark JI Protein Sci; 2005 Mar; 14(3):684-95. PubMed ID: 15722445 [TBL] [Abstract][Full Text] [Related]
16. Binding determinants of the small heat shock protein, αB-crystallin: recognition of the 'IxI' motif. Delbecq SP; Jehle S; Klevit R EMBO J; 2012 Dec; 31(24):4587-94. PubMed ID: 23188086 [TBL] [Abstract][Full Text] [Related]
17. Crystal structures of alpha-crystallin domain dimers of alphaB-crystallin and Hsp20. Bagnéris C; Bateman OA; Naylor CE; Cronin N; Boelens WC; Keep NH; Slingsby C J Mol Biol; 2009 Oct; 392(5):1242-52. PubMed ID: 19646995 [TBL] [Abstract][Full Text] [Related]
18. A computational study of the R120G mutation in human αB-crystallin: implications for structural stability and functionality. Darvazi M; Ghorbani M; Ramazi S; Allahverdi A; Abdolmaleki P J Biomol Struct Dyn; 2024 Jul; 42(11):5788-5798. PubMed ID: 37354135 [TBL] [Abstract][Full Text] [Related]
19. The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends. Selig EE; Lynn RJ; Zlatic CO; Mok YF; Ecroyd H; Gooley PR; Griffin MDW J Mol Biol; 2022 Aug; 434(16):167711. PubMed ID: 35777462 [TBL] [Abstract][Full Text] [Related]
20. The influence of the N-terminal region proximal to the core domain on the assembly and chaperone activity of αB-crystallin. Jovcevski B; Andrew Aquilina J; Benesch JLP; Ecroyd H Cell Stress Chaperones; 2018 Sep; 23(5):827-836. PubMed ID: 29520626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]