These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
510 related articles for article (PubMed ID: 19041913)
1. Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. Chen XH; Koumoutsi A; Scholz R; Schneider K; Vater J; Süssmuth R; Piel J; Borriss R J Biotechnol; 2009 Mar; 140(1-2):27-37. PubMed ID: 19041913 [TBL] [Abstract][Full Text] [Related]
2. More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. Chen XH; Koumoutsi A; Scholz R; Borriss R J Mol Microbiol Biotechnol; 2009; 16(1-2):14-24. PubMed ID: 18957859 [TBL] [Abstract][Full Text] [Related]
4. Genome sequence of the plant growth promoting strain Bacillus amyloliquefaciens subsp. plantarum B9601-Y2 and expression of mersacidin and other secondary metabolites. He P; Hao K; Blom J; Rückert C; Vater J; Mao Z; Wu Y; Hou M; He P; He Y; Borriss R J Biotechnol; 2012 Dec; 164(2):281-91. PubMed ID: 23357245 [TBL] [Abstract][Full Text] [Related]
5. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Arguelles-Arias A; Ongena M; Halimi B; Lara Y; Brans A; Joris B; Fickers P Microb Cell Fact; 2009 Nov; 8():63. PubMed ID: 19941639 [TBL] [Abstract][Full Text] [Related]
6. Difficidin and bacilysin produced by plant-associated Bacillus amyloliquefaciens are efficient in controlling fire blight disease. Chen XH; Scholz R; Borriss M; Junge H; Mögel G; Kunz S; Borriss R J Biotechnol; 2009 Mar; 140(1-2):38-44. PubMed ID: 19061923 [TBL] [Abstract][Full Text] [Related]
7. Genome sequence of B. amyloliquefaciens type strain DSM7(T) reveals differences to plant-associated B. amyloliquefaciens FZB42. Rückert C; Blom J; Chen X; Reva O; Borriss R J Biotechnol; 2011 Aug; 155(1):78-85. PubMed ID: 21262282 [TBL] [Abstract][Full Text] [Related]
8. Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects. Zaid DS; Cai S; Hu C; Li Z; Li Y Microbiol Spectr; 2022 Feb; 10(1):e0216921. PubMed ID: 35107331 [TBL] [Abstract][Full Text] [Related]
9. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Koumoutsi A; Chen XH; Henne A; Liesegang H; Hitzeroth G; Franke P; Vater J; Borriss R J Bacteriol; 2004 Feb; 186(4):1084-96. PubMed ID: 14762003 [TBL] [Abstract][Full Text] [Related]
10. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. Guo S; Li X; He P; Ho H; Wu Y; He Y J Ind Microbiol Biotechnol; 2015 Jun; 42(6):925-37. PubMed ID: 25860123 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional organization of the fengycin synthetase multienzyme system from Bacillus subtilis b213 and A1/3. Steller S; Vollenbroich D; Leenders F; Stein T; Conrad B; Hofemeister J; Jacques P; Thonart P; Vater J Chem Biol; 1999 Jan; 6(1):31-41. PubMed ID: 9889147 [TBL] [Abstract][Full Text] [Related]
12. Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Ramarathnam R; Bo S; Chen Y; Fernando WG; Xuewen G; de Kievit T Can J Microbiol; 2007 Jul; 53(7):901-11. PubMed ID: 17898845 [TBL] [Abstract][Full Text] [Related]
13. Macrolactin is the polyketide biosynthesis product of the pks2 cluster of Bacillus amyloliquefaciens FZB42. Schneider K; Chen XH; Vater J; Franke P; Nicholson G; Borriss R; Süssmuth RD J Nat Prod; 2007 Sep; 70(9):1417-23. PubMed ID: 17844999 [TBL] [Abstract][Full Text] [Related]
14. DegU and YczE positively regulate the synthesis of bacillomycin D by Bacillus amyloliquefaciens strain FZB42. Koumoutsi A; Chen XH; Vater J; Borriss R Appl Environ Microbiol; 2007 Nov; 73(21):6953-64. PubMed ID: 17827323 [TBL] [Abstract][Full Text] [Related]
15. Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Zhao P; Quan C; Wang Y; Wang J; Fan S J Basic Microbiol; 2014 May; 54(5):448-56. PubMed ID: 23553741 [TBL] [Abstract][Full Text] [Related]
16. A comprehensive understanding of the biocontrol potential of Bacillus velezensis LM2303 against Fusarium head blight. Chen L; Heng J; Qin S; Bian K PLoS One; 2018; 13(6):e0198560. PubMed ID: 29856856 [TBL] [Abstract][Full Text] [Related]
17. Production of lipopeptides in Bacillus sp. CS93 isolated from Pozol. Moran S; Robertson K; Paradisi F; Rai DK; Murphy CD FEMS Microbiol Lett; 2010 Mar; 304(1):69-73. PubMed ID: 20070370 [TBL] [Abstract][Full Text] [Related]
18. Genome mining and UHPLC-QTOF-MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. Su Z; Chen X; Liu X; Guo Q; Li S; Lu X; Zhang X; Wang P; Dong L; Zhao W; Ma P BMC Genomics; 2020 Nov; 21(1):767. PubMed ID: 33153447 [TBL] [Abstract][Full Text] [Related]
19. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. Liu G; Kong Y; Fan Y; Geng C; Peng D; Sun M J Biotechnol; 2017 May; 249():20-24. PubMed ID: 28323017 [TBL] [Abstract][Full Text] [Related]
20. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. Xu BH; Lu YQ; Ye ZW; Zheng QW; Wei T; Lin JF; Guo LQ PLoS One; 2018; 13(8):e0202893. PubMed ID: 30169540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]