BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 19041943)

  • 41. Evidence for both neuronal cell autonomous and nonautonomous effects of methyl-CpG-binding protein 2 in the cerebral cortex of female mice with Mecp2 mutation.
    Belichenko NP; Belichenko PV; Mobley WC
    Neurobiol Dis; 2009 Apr; 34(1):71-7. PubMed ID: 19167498
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PKCγ-Mediated Phosphorylation of CRMP2 Regulates Dendritic Outgrowth in Cerebellar Purkinje Cells.
    Winkler SC; Shimobayashi E; Kapfhammer JP
    Mol Neurobiol; 2020 Dec; 57(12):5150-5166. PubMed ID: 32860158
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lentiviral vector-mediated rescue of motor behavior in spontaneously occurring hereditary ataxic mice.
    Iizuka A; Takayama K; Torashima T; Yamasaki M; Koyama C; Mitsumura K; Watanabe M; Hirai H
    Neurobiol Dis; 2009 Sep; 35(3):457-65. PubMed ID: 19573599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spine motility with synaptic contact.
    Dunaevsky A; Blazeski R; Yuste R; Mason C
    Nat Neurosci; 2001 Jul; 4(7):685-6. PubMed ID: 11426220
    [No Abstract]   [Full Text] [Related]  

  • 45. Loss of Purkinje cells in the PKCgamma H101Y transgenic mouse.
    Zhang Y; Snider A; Willard L; Takemoto DJ; Lin D
    Biochem Biophys Res Commun; 2009 Jan; 378(3):524-8. PubMed ID: 19056342
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Abnormal RNA structures (RNA foci) containing a penta-nucleotide repeat (UGGAA)n in the Purkinje cell nucleus is associated with spinocerebellar ataxia type 31 pathogenesis.
    Niimi Y; Takahashi M; Sugawara E; Umeda S; Obayashi M; Sato N; Ishiguro T; Higashi M; Eishi Y; Mizusawa H; Ishikawa K
    Neuropathology; 2013 Dec; 33(6):600-11. PubMed ID: 23607545
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spinocerebellar ataxia type 14.
    Chen DH; Raskind WH; Bird TD
    Handb Clin Neurol; 2012; 103():555-9. PubMed ID: 21827914
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Exploration of preventive drugs for spinocerebellar ataxia using cultured cerebellar Purkinje cells].
    Seki T
    Nihon Yakurigaku Zasshi; 2019; 154(6):310-314. PubMed ID: 31787682
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and characterization of PKCγ, a kinase associated with SCA14, as an amyloidogenic protein.
    Takahashi H; Adachi N; Shirafuji T; Danno S; Ueyama T; Vendruscolo M; Shuvaev AN; Sugimoto T; Seki T; Hamada D; Irie K; Hirai H; Sakai N; Saito N
    Hum Mol Genet; 2015 Jan; 24(2):525-39. PubMed ID: 25217572
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Benign SCA14 phenotype in a German patient associated with a missense mutation in exon 3 of the PRKCG gene.
    Wieczorek S; Arning L; Gizewski ER; Alheite I; Timmann D
    Mov Disord; 2007 Oct; 22(14):2135-6. PubMed ID: 17708558
    [No Abstract]   [Full Text] [Related]  

  • 51. Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation.
    Wong MMK; Hoekstra SD; Vowles J; Watson LM; Fuller G; Németh AH; Cowley SA; Ansorge O; Talbot K; Becker EBE
    Acta Neuropathol Commun; 2018 Sep; 6(1):99. PubMed ID: 30249303
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cbln1 binds to specific postsynaptic sites at parallel fiber-Purkinje cell synapses in the cerebellum.
    Matsuda K; Kondo T; Iijima T; Matsuda S; Watanabe M; Yuzaki M
    Eur J Neurosci; 2009 Feb; 29(4):707-17. PubMed ID: 19200061
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expansion of the phenotypic spectrum of SCA14 caused by the Gly128Asp mutation in PRKCG.
    Miura S; Nakagawara H; Kaida H; Sugita M; Noda K; Motomura K; Ohyagi Y; Ayabe M; Aizawa H; Ishibashi M; Taniwaki T
    Clin Neurol Neurosurg; 2009 Feb; 111(2):211-5. PubMed ID: 18986758
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum.
    Hashimoto K; Yoshida T; Sakimura K; Mishina M; Watanabe M; Kano M
    Neuroscience; 2009 Sep; 162(3):601-11. PubMed ID: 19166909
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mutations in protein kinase Cγ promote spinocerebellar ataxia type 14 by impairing kinase autoinhibition.
    Pilo CA; Baffi TR; Kornev AP; Kunkel MT; Malfavon M; Chen DH; Rossitto LA; Chen DX; Huang LC; Longman C; Kannan N; Raskind WH; Gonzalez DJ; Taylor SS; Gorrie G; Newton AC
    Sci Signal; 2022 Sep; 15(753):eabk1147. PubMed ID: 36166510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Simplified Model of PKCγ Signaling Dysregulation and Cytosol-to-Membrane Translocation Kinetics During Neurodegenerative Spinocerebellar Ataxia Type 14 (SCA14).
    Aslam N; Alvi F
    Front Neurosci; 2019; 13():1397. PubMed ID: 32082104
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effects of 1-naphthyl acetyl spermine on dendrite formation by cultured cerebellar Purkinje cells.
    Tanaka M; Sakata S; Hirashima N
    Neurosci Lett; 2009 Oct; 462(1):30-2. PubMed ID: 19560511
    [TBL] [Abstract][Full Text] [Related]  

  • 58. TLS-GFP cannot rescue mRNP formation near spines and spine phenotype in TLS-KO.
    Fujii R; Grossenbacher-Zinchuk O; Jamari I; Wang Y; Zinchuk V; Takumi T
    Neuroreport; 2009 Jan; 20(1):57-61. PubMed ID: 18989236
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transfer of small interfering RNA by single-cell electroporation in cerebellar cell cultures.
    Tanaka M; Yanagawa Y; Hirashima N
    J Neurosci Methods; 2009 Mar; 178(1):80-6. PubMed ID: 19114056
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Another mutation in cysteine 131 in protein kinase C gamma as a cause of spinocerebellar ataxia type 14.
    Klebe S; Faivre L; Forlani S; Dussert C; Tourbah A; Brice A; Stevanin G; Durr A
    Arch Neurol; 2007 Jun; 64(6):913-4. PubMed ID: 17562946
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.