These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19042002)

  • 21. Impact of growth conditions on transport behavior of E. coli.
    Marcus IM; Bolster CH; Cook KL; Opot SR; Walker SL
    J Environ Monit; 2012 Mar; 14(3):984-91. PubMed ID: 22330946
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell preparation methods influence Escherichia coli D21g surface chemistry and transport in saturated sand.
    Tazehkand SS; Torkzaban S; Bradford SA; Walker SL
    J Environ Qual; 2008; 37(6):2108-15. PubMed ID: 18948464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Transport of Escherichia coli through variably saturated sand columns and modeling approaches.
    Jiang G; Noonan MJ; Buchan GD; Smith N
    J Contam Hydrol; 2007 Aug; 93(1-4):2-20. PubMed ID: 17336421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Escherichia coli transport in porous media: influence of cell strain, solution chemistry, and temperature.
    Kim HN; Walker SL
    Colloids Surf B Biointerfaces; 2009 Jun; 71(1):160-7. PubMed ID: 19278837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of Escherichia coli and Campylobacter jejuni transport in saturated porous media.
    Bolster CH; Walker SL; Cook KL
    J Environ Qual; 2006; 35(4):1018-25. PubMed ID: 16738386
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transport of microbial tracers in clean and organically contaminated silica sand in laboratory columns compared with their transport in the field.
    Weaver L; Sinton LW; Pang L; Dann R; Close M
    Sci Total Environ; 2013 Jan; 443():55-64. PubMed ID: 23178890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacteria cell properties and grain size impact on bacteria transport and deposition in porous media.
    Bai H; Cochet N; Pauss A; Lamy E
    Colloids Surf B Biointerfaces; 2016 Mar; 139():148-55. PubMed ID: 26705829
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of trace elements on surface hydrophobicity and adherence of Escherichia coli to uroepithelial cells.
    Saralaya V; Bhat G; Kamath A; Shivananda PG
    Indian J Exp Biol; 2004 Jul; 42(7):681-5. PubMed ID: 15339032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transport of copper oxychloride-based fungicide particles in saturated quartz sand.
    M P; J S; J C NM; M AE; Lopez-Periago JE
    Environ Sci Technol; 2009 Dec; 43(23):8860-6. PubMed ID: 19943658
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteria transport and deposition under unsaturated conditions: the role of the matrix grain size and the bacteria surface protein.
    Gargiulo G; Bradford S; Simůnek J; Ustohal P; Vereecken H; Klumpp E
    J Contam Hydrol; 2007 Jul; 92(3-4):255-73. PubMed ID: 17337313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Idling time of motile bacteria contributes to retardation and dispersion in sand porous medium.
    Liu J; Ford RM; Smith JA
    Environ Sci Technol; 2011 May; 45(9):3945-51. PubMed ID: 21456575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of Cell Surface Lipopolysaccharides in Escherichia coli K12 adhesion and transport.
    Walker SL; Redman JA; Elimelech M
    Langmuir; 2004 Aug; 20(18):7736-46. PubMed ID: 15323526
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of goethite coating and humic acid on the transport of bacteriophage PRD1 in columns of saturated sand.
    Foppen JW; Okletey S; Schijven JF
    J Contam Hydrol; 2006 May; 85(3-4):287-301. PubMed ID: 16545888
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchically imprinted polymer substrates for enhanced attachment of Escherichia coli.
    Zhang F; Li H; Wang X; Low HY; Li X
    J Colloid Interface Sci; 2010 Mar; 343(1):109-14. PubMed ID: 20006847
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modulation of the susceptibility of intestinal bacteria to bacteriophages in response to Ag43 phase variation -- a hypothesis.
    Wegrzyn G; Thomas MS
    Med Sci Monit; 2002 Jun; 8(6):HY15-8. PubMed ID: 12070443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of enterococcal surface protein (esp) on the transport of Enterococcus faecium within saturated quartz sands.
    Johanson JJ; Feriancikova L; Xu S
    Environ Sci Technol; 2012 Feb; 46(3):1511-8. PubMed ID: 22243624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bacterial attachment and viscoelasticity: physicochemical and motility effects analyzed using quartz crystal microbalance with dissipation (QCM-D).
    Gutman J; Walker SL; Freger V; Herzberg M
    Environ Sci Technol; 2013 Jan; 47(1):398-404. PubMed ID: 23186151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of bacterial plant pathogens in columns filled with quartz and natural sediments under anoxic and oxygenated conditions.
    Eisfeld C; Schijven JF; van der Wolf JM; Medema G; Kruisdijk E; van Breukelen BM
    Water Res; 2022 Jul; 220():118724. PubMed ID: 35696807
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering solutions to improve the removal of fecal indicator bacteria by bioinfiltration systems during intermittent flow of stormwater.
    Mohanty SK; Torkelson AA; Dodd H; Nelson KL; Boehm AB
    Environ Sci Technol; 2013 Oct; 47(19):10791-8. PubMed ID: 23721343
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fecal indicator bacteria transport and deposition in saturated and unsaturated porous media.
    Chen G; Walker SL
    Environ Sci Technol; 2012 Aug; 46(16):8782-90. PubMed ID: 22809290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.