These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Morehouse NI; Vukusic P; Rutowski R Proc Biol Sci; 2007 Feb; 274(1608):359-66. PubMed ID: 17164199 [TBL] [Abstract][Full Text] [Related]
4. Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales. Luke SM; Vukusic P; Hallam B Opt Express; 2009 Aug; 17(17):14729-43. PubMed ID: 19687951 [TBL] [Abstract][Full Text] [Related]
5. Imaging scatterometry and microspectrophotometry of lycaenid butterfly wing scales with perforated multilayers. Wilts BD; Leertouwer HL; Stavenga DG J R Soc Interface; 2009 Apr; 6 Suppl 2(Suppl 2):S185-92. PubMed ID: 18782721 [TBL] [Abstract][Full Text] [Related]
6. Optical properties of the scales of Morpho rhetenor butterflies: theoretical and experimental investigation of the back-scattering of light in the visible spectrum. Plattner L J R Soc Interface; 2004 Nov; 1(1):49-59. PubMed ID: 16849152 [TBL] [Abstract][Full Text] [Related]
9. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly. Yoshioka S; Kinoshita S Proc Biol Sci; 2006 Jan; 273(1583):129-34. PubMed ID: 16555778 [TBL] [Abstract][Full Text] [Related]
10. Reflectivity of the gyroid biophotonic crystals in the ventral wing scales of the Green Hairstreak butterfly, Callophrys rubi. Michielsen K; De Raedt H; Stavenga DG J R Soc Interface; 2010 May; 7(46):765-71. PubMed ID: 19828506 [TBL] [Abstract][Full Text] [Related]
11. Structural color in Thayer RC; Allen FI; Patel NH Elife; 2020 Apr; 9():. PubMed ID: 32254023 [TBL] [Abstract][Full Text] [Related]
12. The marginal band system in nymphalid butterfly wings. Taira W; Kinjo S; Otaki JM Zoolog Sci; 2015 Jan; 32(1):38-46. PubMed ID: 25660695 [TBL] [Abstract][Full Text] [Related]
13. Color generation in butterfly wings and fabrication of such structures. Wong TH; Gupta MC; Robins B; Levendusky TL Opt Lett; 2003 Dec; 28(23):2342-4. PubMed ID: 14680176 [TBL] [Abstract][Full Text] [Related]
14. A Single-Wing Removal Method to Assess Correspondence Between Gene Expression and Phenotype in Butterflies: The Case of Distal-less. Adhikari K; Otaki JM Zoolog Sci; 2016 Feb; 33(1):13-20. PubMed ID: 26853864 [TBL] [Abstract][Full Text] [Related]
15. Coloration mechanisms and phylogeny of Morpho butterflies. Giraldo MA; Yoshioka S; Liu C; Stavenga DG J Exp Biol; 2016 Dec; 219(Pt 24):3936-3944. PubMed ID: 27974535 [TBL] [Abstract][Full Text] [Related]
16. Waterproof and translucent wings at the same time: problems and solutions in butterflies. Goodwyn PP; Maezono Y; Hosoda N; Fujisaki K Naturwissenschaften; 2009 Jul; 96(7):781-7. PubMed ID: 19322552 [TBL] [Abstract][Full Text] [Related]
17. Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales. Pirih P; Wilts BD; Stavenga DG J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Oct; 197(10):987-97. PubMed ID: 21744009 [TBL] [Abstract][Full Text] [Related]