These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 19042976)
1. RNA major groove modifications improve siRNA stability and biological activity. Terrazas M; Kool ET Nucleic Acids Res; 2009 Feb; 37(2):346-53. PubMed ID: 19042976 [TBL] [Abstract][Full Text] [Related]
2. Improved serum stability and biophysical properties of siRNAs following chemical modifications. Cho IS; Kim J; Lim DH; Ahn HC; Kim H; Lee KB; Lee YS Biotechnol Lett; 2008 Nov; 30(11):1901-8. PubMed ID: 18575806 [TBL] [Abstract][Full Text] [Related]
3. siRNA function in RNAi: a chemical modification analysis. Chiu YL; Rana TM RNA; 2003 Sep; 9(9):1034-48. PubMed ID: 12923253 [TBL] [Abstract][Full Text] [Related]
4. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme. Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374 [TBL] [Abstract][Full Text] [Related]
5. Amide-Modified RNA: Using Protein Backbone to Modulate Function of Short Interfering RNAs. Kotikam V; Rozners E Acc Chem Res; 2020 Sep; 53(9):1782-1790. PubMed ID: 32658452 [TBL] [Abstract][Full Text] [Related]
6. Effect of asymmetric terminal structures of short RNA duplexes on the RNA interference activity and strand selection. Sano M; Sierant M; Miyagishi M; Nakanishi M; Takagi Y; Sutou S Nucleic Acids Res; 2008 Oct; 36(18):5812-21. PubMed ID: 18782830 [TBL] [Abstract][Full Text] [Related]
7. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Bramsen JB; Laursen MB; Nielsen AF; Hansen TB; Bus C; Langkjaer N; Babu BR; Højland T; Abramov M; Van Aerschot A; Odadzic D; Smicius R; Haas J; Andree C; Barman J; Wenska M; Srivastava P; Zhou C; Honcharenko D; Hess S; Müller E; Bobkov GV; Mikhailov SN; Fava E; Meyer TF; Chattopadhyaya J; Zerial M; Engels JW; Herdewijn P; Wengel J; Kjems J Nucleic Acids Res; 2009 May; 37(9):2867-81. PubMed ID: 19282453 [TBL] [Abstract][Full Text] [Related]
9. Modulation of thermal stability can enhance the potency of siRNA. Addepalli H; Meena ; Peng CG; Wang G; Fan Y; Charisse K; Jayaprakash KN; Rajeev KG; Pandey RK; Lavine G; Zhang L; Jahn-Hofmann K; Hadwiger P; Manoharan M; Maier MA Nucleic Acids Res; 2010 Nov; 38(20):7320-31. PubMed ID: 20610434 [TBL] [Abstract][Full Text] [Related]
10. Sequence, chemical, and structural variation of small interfering RNAs and short hairpin RNAs and the effect on mammalian gene silencing. Harborth J; Elbashir SM; Vandenburgh K; Manninga H; Scaringe SA; Weber K; Tuschl T Antisense Nucleic Acid Drug Dev; 2003 Apr; 13(2):83-105. PubMed ID: 12804036 [TBL] [Abstract][Full Text] [Related]
11. Small interfering RNAs containing full 2'-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. Kraynack BA; Baker BF RNA; 2006 Jan; 12(1):163-76. PubMed ID: 16301602 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of 4'-C-aminoalkyl-2'-O-methyl modified RNA and their biological properties. Koizumi K; Maeda Y; Kano T; Yoshida H; Sakamoto T; Yamagishi K; Ueno Y Bioorg Med Chem; 2018 Jul; 26(12):3521-3534. PubMed ID: 29789208 [TBL] [Abstract][Full Text] [Related]
14. Steric restrictions of RISC in RNA interference identified with size-expanded RNA nucleobases. Hernández AR; Peterson LW; Kool ET ACS Chem Biol; 2012 Aug; 7(8):1454-61. PubMed ID: 22646660 [TBL] [Abstract][Full Text] [Related]
15. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. Sipa K; Sochacka E; Kazmierczak-Baranska J; Maszewska M; Janicka M; Nowak G; Nawrot B RNA; 2007 Aug; 13(8):1301-16. PubMed ID: 17585051 [TBL] [Abstract][Full Text] [Related]
16. Chemical modification of siRNAs to improve serum stability without loss of efficacy. Choung S; Kim YJ; Kim S; Park HO; Choi YC Biochem Biophys Res Commun; 2006 Apr; 342(3):919-27. PubMed ID: 16598842 [TBL] [Abstract][Full Text] [Related]
17. Modification of the siRNA passenger strand by 5-nitroindole dramatically reduces its off-target effects. Zhang J; Zheng J; Lu C; Du Q; Liang Z; Xi Z Chembiochem; 2012 Sep; 13(13):1940-5. PubMed ID: 22887813 [TBL] [Abstract][Full Text] [Related]
18. Re-Engineering RNA Molecules into Therapeutic Agents. Egli M; Manoharan M Acc Chem Res; 2019 Apr; 52(4):1036-1047. PubMed ID: 30912917 [TBL] [Abstract][Full Text] [Related]