BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 19043406)

  • 1. An inducible autoregulatory loop between HIPK2 and Siah2 at the apex of the hypoxic response.
    Calzado MA; de la Vega L; Möller A; Bowtell DD; Schmitz ML
    Nat Cell Biol; 2009 Jan; 11(1):85-91. PubMed ID: 19043406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From top to bottom: the two faces of HIPK2 for regulation of the hypoxic response.
    Calzado MA; De La Vega L; Munoz E; Schmitz ML
    Cell Cycle; 2009 Jun; 8(11):1659-64. PubMed ID: 19448429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stabilization of HIPK2 by escape from proteasomal degradation mediated by the E3 ubiquitin ligase Siah1.
    Kim SY; Choi DW; Kim EA; Choi CY
    Cancer Lett; 2009 Jul; 279(2):177-84. PubMed ID: 19250734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutual regulation between SIAH2 and DYRK2 controls hypoxic and genotoxic signaling pathways.
    Pérez M; García-Limones C; Zapico I; Marina A; Schmitz ML; Muñoz E; Calzado MA
    J Mol Cell Biol; 2012 Oct; 4(5):316-30. PubMed ID: 22878263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoregulatory control of the p53 response by Siah-1L-mediated HIPK2 degradation.
    Calzado MA; de la Vega L; Muñoz E; Schmitz ML
    Biol Chem; 2009 Oct; 390(10):1079-83. PubMed ID: 19642869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutual regulation between Polo-like kinase 3 and SIAH2 E3 ubiquitin ligase defines a regulatory network that fine-tunes the cellular response to hypoxia and nickel.
    Li C; Park S; Zhang X; Dai W; Xu D
    J Biol Chem; 2017 Jul; 292(27):11431-11444. PubMed ID: 28515325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The SIAH1-HIPK2-p53ser46 Damage Response Pathway is Involved in Temozolomide-Induced Glioblastoma Cell Death.
    He Y; Roos WP; Wu Q; Hofmann TG; Kaina B
    Mol Cancer Res; 2019 May; 17(5):1129-1141. PubMed ID: 30796178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of HIPK2 stability by ubiquitin ligase Siah-1 and checkpoint kinases ATM and ATR.
    Winter M; Sombroek D; Dauth I; Moehlenbrink J; Scheuermann K; Crone J; Hofmann TG
    Nat Cell Biol; 2008 Jul; 10(7):812-24. PubMed ID: 18536714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seven in absentia homolog 2 (Siah2) protein is a regulator of NF-E2-related factor 2 (Nrf2).
    Baba K; Morimoto H; Imaoka S
    J Biol Chem; 2013 Jun; 288(25):18393-405. PubMed ID: 23645672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation-dependent control of Pc2 SUMO E3 ligase activity by its substrate protein HIPK2.
    Roscic A; Möller A; Calzado MA; Renner F; Wimmer VC; Gresko E; Lüdi KS; Schmitz ML
    Mol Cell; 2006 Oct; 24(1):77-89. PubMed ID: 17018294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypoxia suppresses chemotherapeutic drug-induced p53 Serine 46 phosphorylation by triggering HIPK2 degradation.
    Moehlenbrink J; Bitomsky N; Hofmann TG
    Cancer Lett; 2010 Jun; 292(1):119-24. PubMed ID: 20018442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zyxin is a critical regulator of the apoptotic HIPK2-p53 signaling axis.
    Crone J; Glas C; Schultheiss K; Moehlenbrink J; Krieghoff-Henning E; Hofmann TG
    Cancer Res; 2011 Mar; 71(6):2350-9. PubMed ID: 21248071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XAF1 directs apoptotic switch of p53 signaling through activation of HIPK2 and ZNF313.
    Lee MG; Han J; Jeong SI; Her NG; Lee JH; Ha TK; Kang MJ; Ryu BK; Chi SG
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15532-7. PubMed ID: 25313037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fbxw7 acts as an E3 ubiquitin ligase that targets c-Myb for nemo-like kinase (NLK)-induced degradation.
    Kanei-Ishii C; Nomura T; Takagi T; Watanabe N; Nakayama KI; Ishii S
    J Biol Chem; 2008 Nov; 283(45):30540-8. PubMed ID: 18765672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia regulates Hippo signalling through the SIAH2 ubiquitin E3 ligase.
    Ma B; Chen Y; Chen L; Cheng H; Mu C; Li J; Gao R; Zhou C; Cao L; Liu J; Zhu Y; Chen Q; Wu S
    Nat Cell Biol; 2015 Jan; 17(1):95-103. PubMed ID: 25438054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CHK2 stability is regulated by the E3 ubiquitin ligase SIAH2.
    García-Limones C; Lara-Chica M; Jiménez-Jiménez C; Pérez M; Moreno P; Muñoz E; Calzado MA
    Oncogene; 2016 Aug; 35(33):4289-301. PubMed ID: 26751770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperglycemia triggers HIPK2 protein degradation.
    Baldari S; Garufi A; Granato M; Cuomo L; Pistritto G; Cirone M; D'Orazi G
    Oncotarget; 2017 Jan; 8(1):1190-1203. PubMed ID: 27901482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2.
    Nadeau RJ; Toher JL; Yang X; Kovalenko D; Friesel R
    J Cell Biochem; 2007 Jan; 100(1):151-60. PubMed ID: 16888801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homeodomain-interacting protein kinase 2 (HIPK2) targets beta-catenin for phosphorylation and proteasomal degradation.
    Kim EA; Kim JE; Sung KS; Choi DW; Lee BJ; Choi CY
    Biochem Biophys Res Commun; 2010 Apr; 394(4):966-71. PubMed ID: 20307497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The hypoxia-controlled FBXL14 ubiquitin ligase targets SNAIL1 for proteasome degradation.
    Viñas-Castells R; Beltran M; Valls G; Gómez I; García JM; Montserrat-Sentís B; Baulida J; Bonilla F; de Herreros AG; Díaz VM
    J Biol Chem; 2010 Feb; 285(6):3794-3805. PubMed ID: 19955572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.