BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19043594)

  • 1. Atrophin proteins: an overview of a new class of nuclear receptor corepressors.
    Wang L; Tsai CC
    Nucl Recept Signal; 2008; 6():e009. PubMed ID: 19043594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atrophin recruits HDAC1/2 and G9a to modify histone H3K9 and to determine cell fates.
    Wang L; Charroux B; Kerridge S; Tsai CC
    EMBO Rep; 2008 Jun; 9(6):555-62. PubMed ID: 18451879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Drosophila atrophin homolog functions as a transcriptional corepressor in multiple developmental processes.
    Zhang S; Xu L; Lee J; Xu T
    Cell; 2002 Jan; 108(1):45-56. PubMed ID: 11792320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone deacetylase-associating Atrophin proteins are nuclear receptor corepressors.
    Wang L; Rajan H; Pitman JL; McKeown M; Tsai CC
    Genes Dev; 2006 Mar; 20(5):525-30. PubMed ID: 16481466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tale of tailless.
    Gui H; Li ML; Tsai CC
    Dev Neurosci; 2011; 33(1):1-13. PubMed ID: 21124006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atrophin-1, the dentato-rubral and pallido-luysian atrophy gene product, interacts with ETO/MTG8 in the nuclear matrix and represses transcription.
    Wood JD; Nucifora FC; Duan K; Zhang C; Wang J; Kim Y; Schilling G; Sacchi N; Liu JM; Ross CA
    J Cell Biol; 2000 Sep; 150(5):939-48. PubMed ID: 10973986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila brakeless interacts with atrophin and is required for tailless-mediated transcriptional repression in early embryos.
    Haecker A; Qi D; Lilja T; Moussian B; Andrioli LP; Luschnig S; Mannervik M
    PLoS Biol; 2007 Jun; 5(6):e145. PubMed ID: 17503969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The tumor-suppressor and cell adhesion molecule Fat controls planar polarity via physical interactions with Atrophin, a transcriptional co-repressor.
    Fanto M; Clayton L; Meredith J; Hardiman K; Charroux B; Kerridge S; McNeill H
    Development; 2003 Feb; 130(4):763-74. PubMed ID: 12506006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional architecture of atrophins.
    Shen Y; Lee G; Choe Y; Zoltewicz JS; Peterson AS
    J Biol Chem; 2007 Feb; 282(7):5037-5044. PubMed ID: 17150957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atrophin controls developmental signaling pathways via interactions with Trithorax-like.
    Yeung K; Boija A; Karlsson E; Holmqvist PH; Tsatskis Y; Nisoli I; Yap D; Lorzadeh A; Moksa M; Hirst M; Aparicio S; Fanto M; Stenberg P; Mannervik M; McNeill H
    Elife; 2017 Mar; 6():. PubMed ID: 28327288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic interactions among scribbler, Atrophin and groucho in Drosophila uncover links in transcriptional repression.
    Wehn A; Campbell G
    Genetics; 2006 Jun; 173(2):849-61. PubMed ID: 16624911
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for corepressor assembly by the orphan nuclear receptor TLX.
    Zhi X; Zhou XE; He Y; Searose-Xu K; Zhang CL; Tsai CC; Melcher K; Xu HE
    Genes Dev; 2015 Feb; 29(4):440-50. PubMed ID: 25691470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atrophin contributes to the negative regulation of epidermal growth factor receptor signaling in Drosophila.
    Charroux B; Freeman M; Kerridge S; Baonza A
    Dev Biol; 2006 Mar; 291(2):278-90. PubMed ID: 16445904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrophin 2 recruits histone deacetylase and is required for the function of multiple signaling centers during mouse embryogenesis.
    Zoltewicz JS; Stewart NJ; Leung R; Peterson AS
    Development; 2004 Jan; 131(1):3-14. PubMed ID: 14645126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atrophin protein RERE positively regulates Notch targets in the developing vertebrate spinal cord.
    Wang H; Gui H; Rallo MS; Xu Z; Matise MP
    J Neurochem; 2017 May; 141(3):347-357. PubMed ID: 28144959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The conserved microRNA miR-8 tunes atrophin levels to prevent neurodegeneration in Drosophila.
    Karres JS; Hilgers V; Carrera I; Treisman J; Cohen SM
    Cell; 2007 Oct; 131(1):136-45. PubMed ID: 17923093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oncoprotein BCL11A binds to orphan nuclear receptor TLX and potentiates its transrepressive function.
    Estruch SB; Buzón V; Carbó LR; Schorova L; Lüders J; Estébanez-Perpiñá E
    PLoS One; 2012; 7(6):e37963. PubMed ID: 22675500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grunge, related to human Atrophin-like proteins, has multiple functions in Drosophila development.
    Erkner A; Roure A; Charroux B; Delaage M; Holway N; Coré N; Vola C; Angelats C; Pagès F; Fasano L; Kerridge S
    Development; 2002 Mar; 129(5):1119-29. PubMed ID: 11874908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear receptor coregulators: cellular and molecular biology.
    McKenna NJ; Lanz RB; O'Malley BW
    Endocr Rev; 1999 Jun; 20(3):321-44. PubMed ID: 10368774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RERE deficiency leads to decreased expression of GATA4 and the development of ventricular septal defects.
    Kim BJ; Zaveri HP; Jordan VK; Hernandez-Garcia A; Jacob DJ; Zamora DL; Yu W; Schwartz RJ; Scott DA
    Dis Model Mech; 2018 Aug; 11(9):. PubMed ID: 30061196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.