BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19043811)

  • 41. The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin.
    Gregoli PA; Bondurant MC
    Blood; 1997 Jul; 90(2):630-40. PubMed ID: 9226163
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Evaluation of erythropoiesis by new methylene blue staining to establish reticulocyte maturity in bone marrow aspirates and peripheral blood.
    Inoue T; Tatsumi N
    Acta Cytol; 1991; 35(4):479-80. PubMed ID: 1927185
    [No Abstract]   [Full Text] [Related]  

  • 43. Melanocortins contribute to sequential differentiation and enucleation of human erythroblasts via melanocortin receptors 1, 2 and 5.
    Simamura E; Arikawa T; Ikeda T; Shimada H; Shoji H; Masuta H; Nakajima Y; Otani H; Yonekura H; Hatta T
    PLoS One; 2015; 10(4):e0123232. PubMed ID: 25860801
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cooperation of Spi-1/PU.1 with an activated erythropoietin receptor inhibits apoptosis and Epo-dependent differentiation in primary erythroblasts and induces their Kit ligand-dependent proliferation.
    Quang CT; Wessely O; Pironin M; Beug H; Ghysdael J
    EMBO J; 1997 Sep; 16(18):5639-53. PubMed ID: 9312023
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cdc42 regulates cell polarization and contractile actomyosin rings during terminal differentiation of human erythroblasts.
    Ubukawa K; Goto T; Asanuma K; Sasaki Y; Guo YM; Kobayashi I; Sawada K; Wakui H; Takahashi N
    Sci Rep; 2020 Jul; 10(1):11806. PubMed ID: 32678227
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth of erythroid colonies in chronic myelogenous leukemia is independent of erythropoietin only in the presence of steel factor.
    Issaad C; Vainchenker W
    Blood; 1994 Nov; 84(10):3447-56. PubMed ID: 7524739
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Erythroid enucleation: a gateway into a "bloody" world.
    Menon V; Ghaffari S
    Exp Hematol; 2021 Mar; 95():13-22. PubMed ID: 33440185
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro maturation of nascent reticulocytes to erythrocytes.
    Koury MJ; Koury ST; Kopsombut P; Bondurant MC
    Blood; 2005 Mar; 105(5):2168-74. PubMed ID: 15528310
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recombinant murine erythropoietin receptor expressed in avian erythroid progenitors mediates terminal erythroid differentiation in vitro.
    Steinlein P; Deiner E; Leutz A; Beug H
    Growth Factors; 1994; 10(1):1-16. PubMed ID: 8179929
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enucleation of phagocytic cells with adenine, guanine, and their nucleosides in combination with centrifugation.
    Saito T; Yamaguchi J
    Biol Cell; 1988; 63(3):287-96. PubMed ID: 3224212
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Severe Ankyrin-R deficiency results in impaired surface retention and lysosomal degradation of RhAG in human erythroblasts.
    Satchwell TJ; Bell AJ; Hawley BR; Pellegrin S; Mordue KE; van Deursen CT; Braak NH; Huls G; Leers MP; Overwater E; Tamminga RY; van der Zwaag B; Fermo E; Bianchi P; van Wijk R; Toye AM
    Haematologica; 2016 Sep; 101(9):1018-27. PubMed ID: 27247322
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis.
    Zhao B; Mei Y; Yang J; Ji P
    Exp Hematol; 2016 Oct; 44(10):975-81. PubMed ID: 27364565
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Molecular identification and functional characterization of a novel protein that mediates the attachment of erythroblasts to macrophages.
    Hanspal M; Smockova Y; Uong Q
    Blood; 1998 Oct; 92(8):2940-50. PubMed ID: 9763581
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Role of pertussis toxin-sensitive guanosine triphosphate-binding proteins in the response of erythroblasts to erythropoietin.
    Miller BA; Foster K; Robishaw JD; Whitfield CF; Bell L; Cheung JY
    Blood; 1991 Feb; 77(3):486-92. PubMed ID: 1899345
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Erythroblasts derived in vitro from embryonic stem cells in the presence of erythropoietin do not express the TER-119 antigen.
    Otani T; Nakamura S; Inoue T; Ijiri Y; Tsuji-Takayama K; Motoda R; Orita K
    Exp Hematol; 2004 Jul; 32(7):607-13. PubMed ID: 15246156
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iron dose-dependent differentiation and enucleation of human erythroblasts in serum-free medium.
    Byrnes C; Lee YT; Meier ER; Rabel A; Sacks DB; Miller JL
    J Tissue Eng Regen Med; 2016 Feb; 10(2):E84-9. PubMed ID: 23606586
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The erythroid island: structure and function.
    Ben-Ishay Z
    Pathobiol Annu; 1977; 7():63-81. PubMed ID: 339154
    [No Abstract]   [Full Text] [Related]  

  • 58. The majority of the in vitro erythroid expansion potential resides in CD34(-) cells, outweighing the contribution of CD34(+) cells and significantly increasing the erythroblast yield from peripheral blood samples.
    van den Akker E; Satchwell TJ; Pellegrin S; Daniels G; Toye AM
    Haematologica; 2010 Sep; 95(9):1594-8. PubMed ID: 20378567
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.
    Belay E; Hayes BJ; Blau CA; Torok-Storb B
    PLoS One; 2017; 12(1):e0171096. PubMed ID: 28135323
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The erythroblastic island.
    Manwani D; Bieker JJ
    Curr Top Dev Biol; 2008; 82():23-53. PubMed ID: 18282516
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.