These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 19044444)
1. An improved correlation method for determining the period of a torsion pendulum. Luo J; Wang DH Rev Sci Instrum; 2008 Sep; 79(9):094705. PubMed ID: 19044444 [TBL] [Abstract][Full Text] [Related]
2. The uncertainty of the pendulum method for the determination of the moment of inertia. Dowling JJ; Durkin JL; Andrews DM Med Eng Phys; 2006 Oct; 28(8):837-41. PubMed ID: 16442329 [TBL] [Abstract][Full Text] [Related]
3. Influence of temperature on period of torsion pendulum with a high-Q fused silica fiber. Luo J; Wu WH; Shao CG; Li Q; Liu JP; Zhan WZ; Wang DH Rev Sci Instrum; 2015 Sep; 86(9):094501. PubMed ID: 26429460 [TBL] [Abstract][Full Text] [Related]
4. G measurements with time-of-swing method at HUST. Li Q; Liu JP; Zhao HH; Yang SQ; Tu LC; Liu Q; Shao CG; Hu ZK; Milyukov V; Luo J Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2026):. PubMed ID: 25202004 [TBL] [Abstract][Full Text] [Related]
5. Computer automation of data acquisition from a Knudsen, torsion-effusion pendulum. Edwards JG; Heckler MK; Thompson HB Rev Sci Instrum; 1979 Mar; 50(3):374. PubMed ID: 18699511 [TBL] [Abstract][Full Text] [Related]
6. Determination of the Newtonian gravitational constant G with time-of-swing method. Luo J; Liu Q; Tu LC; Shao CG; Liu LX; Yang SQ; Li Q; Zhang YT Phys Rev Lett; 2009 Jun; 102(24):240801. PubMed ID: 19658992 [TBL] [Abstract][Full Text] [Related]
7. A measurement of G with a cryogenic torsion pendulum. Newman R; Bantel M; Berg E; Cross W Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2026):. PubMed ID: 25202000 [TBL] [Abstract][Full Text] [Related]
8. Measurement of Newton's constant using a torsion balance with angular acceleration feedback. Gundlach JH; Merkowitz SM Phys Rev Lett; 2000 Oct; 85(14):2869-72. PubMed ID: 11005956 [TBL] [Abstract][Full Text] [Related]
9. An improved correlation method for amplitude estimation of gravitational background signal with time-varying frequency. Wu WH; Tian Y; Luo J; Shao CG; Xu JH; Wang DH Rev Sci Instrum; 2016 Sep; 87(9):094501. PubMed ID: 27782586 [TBL] [Abstract][Full Text] [Related]
10. Using DWS Optical Readout to Improve the Sensitivity of Torsion Pendulum. Wang S; Liu H; Dai L; Luo Z; Xu P; Li P; Gao R; Li D; Qi K Sensors (Basel); 2023 Sep; 23(19):. PubMed ID: 37836917 [TBL] [Abstract][Full Text] [Related]
11. Preliminary determination of Newtonian gravitational constant with angular acceleration feedback method. Xue C; Quan LD; Yang SQ; Wang BP; Wu JF; Shao CG; Tu LC; Milyukov V; Luo J Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2026):. PubMed ID: 25201996 [TBL] [Abstract][Full Text] [Related]
12. Magnetic shielding in a low-temperature torsion pendulum experiment. Phillips PR Rev Sci Instrum; 1979 Aug; 50(8):1018-9. PubMed ID: 18699656 [TBL] [Abstract][Full Text] [Related]
13. Estimation of uncertainty in size-exclusion chromatography with a double detection system (light-scattering and refractive index). Oliva A; Llabrés M; Fariña JB Talanta; 2009 May; 78(3):781-9. PubMed ID: 19269428 [TBL] [Abstract][Full Text] [Related]
14. Precision measurement of the Newtonian gravitational constant using cold atoms. Rosi G; Sorrentino F; Cacciapuoti L; Prevedelli M; Tino GM Nature; 2014 Jun; 510(7506):518-21. PubMed ID: 24965653 [TBL] [Abstract][Full Text] [Related]
15. Test of the Equivalence Principle with Chiral Masses Using a Rotating Torsion Pendulum. Zhu L; Liu Q; Zhao HH; Gong QL; Yang SQ; Luo P; Shao CG; Wang QL; Tu LC; Luo J Phys Rev Lett; 2018 Dec; 121(26):261101. PubMed ID: 30636147 [TBL] [Abstract][Full Text] [Related]
16. Null test of Newtonian inverse-square law at submillimeter range with a dual-modulation torsion pendulum. Tu LC; Guan SG; Luo J; Shao CG; Liu LX Phys Rev Lett; 2007 May; 98(20):201101. PubMed ID: 17677684 [TBL] [Abstract][Full Text] [Related]
17. Measurements of the gravitational constant using two independent methods. Li Q; Xue C; Liu JP; Wu JF; Yang SQ; Shao CG; Quan LD; Tan WH; Tu LC; Liu Q; Xu H; Liu LX; Wang QL; Hu ZK; Zhou ZB; Luo PS; Wu SC; Milyukov V; Luo J Nature; 2018 Aug; 560(7720):582-588. PubMed ID: 30158607 [TBL] [Abstract][Full Text] [Related]
18. A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties. James KR; Dowling DR J Acoust Soc Am; 2008 Sep; 124(3):1465-76. PubMed ID: 19045638 [TBL] [Abstract][Full Text] [Related]
19. A newly designed decoupling method for micro-Newton thrust measurement. Xu H; Mao Q; Gao Y; Wei L; Ding Y; Tu H; Song P; Hu Z; Li Q Rev Sci Instrum; 2023 Jan; 94(1):014504. PubMed ID: 36725612 [TBL] [Abstract][Full Text] [Related]
20. The attracting masses in measurements of G: an overview of physical characteristics and performance. Gillies GT; Unnikrishnan CS Philos Trans A Math Phys Eng Sci; 2014 Oct; 372(2026):. PubMed ID: 25201999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]