BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 19044445)

  • 1. Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement.
    Karbassi A; Ruf D; Bettermann AD; Paulson CA; van der Weide DW; Tanbakuchi H; Stancliff R
    Rev Sci Instrum; 2008 Sep; 79(9):094706. PubMed ID: 19044445
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative dielectric constant measurement of thin films by DC electrostatic force microscopy.
    Gramse G; Casuso I; Toset J; Fumagalli L; Gomila G
    Nanotechnology; 2009 Sep; 20(39):395702. PubMed ID: 19724109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative model for near-field scanning microwave microscopy: application to metrology of thin film dielectrics.
    Reznik AN; Talanov VV
    Rev Sci Instrum; 2008 Nov; 79(11):113708. PubMed ID: 19045896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes.
    Lai K; Ji MB; Leindecker N; Kelly MA; Shen ZX
    Rev Sci Instrum; 2007 Jun; 78(6):063702. PubMed ID: 17614611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of CdS thin films by a near-field microwave microprobe.
    Sargsyan T; Hovsepyan A; Melikyan H; Yoon Y; Lee H; Babajanyan A; Kim M; Cha D; Lee K
    Ultramicroscopy; 2008 Sep; 108(10):1062-5. PubMed ID: 18562116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Broadband dielectric microwave microscopy on micron length scales.
    Tselev A; Anlage SM; Ma Z; Melngailis J
    Rev Sci Instrum; 2007 Apr; 78(4):044701. PubMed ID: 17477685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High frequency dielectric properties distribution of BiFeO3 thin film using near-field microwave microscopy.
    Zhang XY; Wang XC; Xu F; Ma YG; Ong CK
    Rev Sci Instrum; 2009 Nov; 80(11):114701. PubMed ID: 19947745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical, dielectric and morphological studies of sol-gel derived nanocrystalline TiO2 films.
    Vishwas M; Sharma SK; Narasimha Rao K; Mohan S; Gowda KV; Chakradhar RP
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Oct; 74(3):839-42. PubMed ID: 19717333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft-mode hardening in SrTiO3 thin films.
    Sirenko AA; Bernhard C; Golnik A; Clark AM; Hao J; Si W; Xi XX
    Nature; 2000 Mar; 404(6776):373-6. PubMed ID: 10746720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tapping mode microwave impedance microscopy.
    Lai K; Kundhikanjana W; Peng H; Cui Y; Kelly MA; Shen ZX
    Rev Sci Instrum; 2009 Apr; 80(4):043707. PubMed ID: 19405666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of microwave annealing temperatures on lead zirconate titanate thin films.
    Bhaskar A; Chang HY; Chang TH; Cheng SY
    Nanotechnology; 2007 Oct; 18(39):395704. PubMed ID: 21730429
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative measurement of piezoelectric coefficient of thin film using a scanning evanescent microwave microscope.
    Zhao Z; Luo Z; Liu C; Wu W; Gao C; Lu Y
    Rev Sci Instrum; 2008 Jun; 79(6):064704. PubMed ID: 18601426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale characterization of the dielectric charging phenomenon in PECVD silicon nitride thin films with various interfacial structures based on Kelvin probe force microscopy.
    Zaghloul U; Papaioannou GJ; Wang H; Bhushan B; Coccetti F; Pons P; Plana R
    Nanotechnology; 2011 May; 22(20):205708. PubMed ID: 21444948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced dielectric constant resolution of thin insulating films by electrostatic force microscopy.
    Castellano-Hernández E; Moreno-Llorena J; Sáenz JJ; Sacha GM
    J Phys Condens Matter; 2012 Apr; 24(15):155303. PubMed ID: 22442155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the dielectric constant of thin films by terahertz time-domain spectroscopic ellipsometry.
    Matsumoto N; Hosokura T; Nagashima T; Hangyo M
    Opt Lett; 2011 Jan; 36(2):265-7. PubMed ID: 21263521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Broadband method for precise microwave spectroscopy of superconducting thin films near the critical temperature.
    Kitano H; Ohashi T; Maeda A
    Rev Sci Instrum; 2008 Jul; 79(7):074701. PubMed ID: 18681723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of magnetic domains by near-field scanning microwave microscope.
    Lee K; Melikyan H; Babajanyan A; Sargsyan T; Kim J; Kim S; Friedman B
    Ultramicroscopy; 2009 Jul; 109(8):889-93. PubMed ID: 19342175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of doped BST thin films deposited by sol-gel for tunable microwave devices.
    Khalfallaoui A; Vélu G; Burgnies L; Carru JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1029-33. PubMed ID: 20442013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microwave atomic force microscopy imaging for nanometer-scale electrical property characterization.
    Zhang L; Ju Y; Hosoi A; Fujimoto A
    Rev Sci Instrum; 2010 Dec; 81(12):123708. PubMed ID: 21198033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative sub-surface and non-contact imaging using scanning microwave microscopy.
    Gramse G; Brinciotti E; Lucibello A; Patil SB; Kasper M; Rankl C; Giridharagopal R; Hinterdorfer P; Marcelli R; Kienberger F
    Nanotechnology; 2015 Mar; 26(13):135701. PubMed ID: 25751635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.