These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19044823)

  • 1. The H(3) (+) rovibrational spectrum revisited with a global electronic potential energy surface.
    Velilla L; Lepetit B; Aguado A; Beswick JA; Paniagua M
    J Chem Phys; 2008 Aug; 129(8):084307. PubMed ID: 19044823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate global potential energy surface, dipole moment surface, and rovibrational frequencies for NH(3).
    Huang X; Schwenke DW; Lee TJ
    J Chem Phys; 2008 Dec; 129(21):214304. PubMed ID: 19063558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calculation of argon trimer rovibrational spectrum.
    Karlický F; Lepetit B; Kalus R; Gadéa FX
    J Chem Phys; 2007 May; 126(17):174305. PubMed ID: 17492861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full dimensional (15-dimensional) quantum-dynamical simulation of the protonated water-dimer III: Mixed Jacobi-valence parametrization and benchmark results for the zero point energy, vibrationally excited states, and infrared spectrum.
    Vendrell O; Brill M; Gatti F; Lauvergnat D; Meyer HD
    J Chem Phys; 2009 Jun; 130(23):234305. PubMed ID: 19548725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variational quantum mechanical and active database approaches to the rotational-vibrational spectroscopy of ketene, H2CCO.
    Fábri C; Mátyus E; Furtenbacher T; Nemes L; Mihály B; Zoltáni T; Császár AG
    J Chem Phys; 2011 Sep; 135(9):094307. PubMed ID: 21913763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approaching the full set of energy levels of water.
    Maksyutenko P; Muenter JS; Zobov NF; Shirin SV; Polyansky OL; Rizzo TR; Boyarkin OV
    J Chem Phys; 2007 Jun; 126(24):241101. PubMed ID: 17614527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rovibrational energy levels of H3(+) with energies above the barrier to linearity.
    Bachorz RA; Cencek W; Jaquet R; Komasa J
    J Chem Phys; 2009 Jul; 131(2):024105. PubMed ID: 19603968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully quantum rovibrational calculation of the He(H2) bound and resonance states.
    Xiao Y; Poirier B
    J Phys Chem A; 2006 Apr; 110(16):5475-80. PubMed ID: 16623478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Na(+)-H(2) cation complex: Rotationally resolved infrared spectrum, potential energy surface, and rovibrational calculations.
    Poad BL; Wearne PJ; Bieske EJ; Buchachenko AA; Bennett DI; Kłos J; Alexander MH
    J Chem Phys; 2008 Nov; 129(18):184306. PubMed ID: 19045402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rovibrational energy levels of hydrogen peroxide, studied by MULTIMODE with a reaction path Hamiltonian.
    Carter S; Handy NC
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Jul; 60(8-9):2107-11. PubMed ID: 15248993
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal internal coordinates, vibrational spectrum, and effective Hamiltonian for ozone.
    Zúñiga J; Picón JA; Bastida A; Requena A
    J Chem Phys; 2007 Jun; 126(24):244305. PubMed ID: 17614547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibration energy levels of the PH3, PH2D, and PHD2 molecules calculated from high order potential energy surface.
    Nikitin AV; Holka F; Tyuterev VG; Fremont J
    J Chem Phys; 2009 Jun; 130(24):244312. PubMed ID: 19566158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photochemical reactions of the low-lying excited states of formaldehyde: T1/S0 intersystem crossings, characteristics of the S1 and T1 potential energy surfaces, and a global T1 potential energy surface.
    Zhang P; Maeda S; Morokuma K; Braams BJ
    J Chem Phys; 2009 Mar; 130(11):114304. PubMed ID: 19317536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate Rovibrational Spectroscopic Properties of Cyanogen and Its Isotopomers.
    Hochlaf M
    J Mol Spectrosc; 2001 Jun; 207(2):269-275. PubMed ID: 11397116
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental long range potential of the B 1Pi state in NaRb.
    Pashov A; Jastrzebski W; Kortyka P; Kowalczyk P
    J Chem Phys; 2006 May; 124(20):204308. PubMed ID: 16774333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The water-nitric oxide intermolecular potential-energy surface revisited.
    Cybulski H; Zuchowski PS; Fernández B; Sadlej J
    J Chem Phys; 2009 Mar; 130(10):104303. PubMed ID: 19292530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collisionally assisted spectroscopy of water from 27,000 to 34,000 cm(-1).
    Grechko M; Maksyutenko P; Zobov NF; Shirin SV; Polyansky OL; Rizzo TR; Boyarkin OV
    J Phys Chem A; 2008 Oct; 112(42):10539-45. PubMed ID: 18823107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical spectroscopy of the N2HAr+ complex.
    Brites V; Dopfer O; Hochlaf M
    J Phys Chem A; 2008 Nov; 112(44):11283-90. PubMed ID: 18855365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum dynamics of hydrogen interacting with single-walled carbon nanotubes.
    McAfee JL; Poirier B
    J Chem Phys; 2009 Feb; 130(6):064701. PubMed ID: 19222284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic states, potential energy surface, and theoretical spectroscopy of Be2H2.
    Brites V; Léonard C
    J Phys Chem A; 2012 Sep; 116(38):9484-9. PubMed ID: 22946633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.