These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 19044934)

  • 21. Localized Gaussian type orbital-periodic boundary condition-density functional theory study of infinite-length single-walled carbon nanotubes with various tubular diameters.
    Wang HW; Wang BC; Chen WH; Hayashi M
    J Phys Chem A; 2008 Feb; 112(8):1783-90. PubMed ID: 18247507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energetics and electronic structures of AlN nanotubes/wires and their potential application as ammonia sensors.
    Zhou Z; Zhao J; Chen Y; Schleyer Pv; Chen Z
    Nanotechnology; 2007 Oct; 18(42):424023. PubMed ID: 21730456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction and characterization of the HMgHLiX (X = H, OH, F, CCH, CN, and NC) complexes: a lithium-hydride lithium bond.
    Li Q; Wang Y; Li W; Cheng J; Gong B; Sun J
    Phys Chem Chem Phys; 2009 Apr; 11(14):2402-7. PubMed ID: 19325972
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Controlling electronic structures by irradiation in single-walled SiC nanotubes: a first-principles molecular dynamics study.
    Wang Z; Gao F; Li J; Zu X; Weber WJ
    Nanotechnology; 2009 Feb; 20(7):075708. PubMed ID: 19417436
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of mixed substituents on the macrocyclic ring distortions of free base porphyrins and their metal complexes.
    Bhyrappa P; Arunkumar C; Varghese B
    Inorg Chem; 2009 May; 48(9):3954-65. PubMed ID: 19334709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Density functional study of lithium-aromatic sandwich compounds and their crystals.
    Kang HS
    J Phys Chem A; 2005 Jan; 109(3):478-83. PubMed ID: 16833368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spectroscopy and defect identification for fluorinated carbon nanotubes.
    Bittencourt C; Van Lier G; Ke X; Suarez-Martinez I; Felten A; Ghijsen J; Van Tendeloo G; Ewels CP
    Chemphyschem; 2009 Apr; 10(6):920-5. PubMed ID: 19266519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes.
    Stepanian SG; Karachevtsev MV; Glamazda AY; Karachevtsev VA; Adamowicz L
    J Phys Chem A; 2009 Apr; 113(15):3621-9. PubMed ID: 19320448
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A DFT study of the amination of fullerenes and carbon nanotubes: reactivity and curvature.
    Lin T; Zhang WD; Huang J; He C
    J Phys Chem B; 2005 Jul; 109(28):13755-60. PubMed ID: 16852723
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Li adsorption and diffusion in single-walled silicon nanotubes: an ab initio study.
    Kulish VV; Ng MF; Malyi OI; Wu P; Chen Z
    Chemphyschem; 2013 Apr; 14(6):1161-7. PubMed ID: 23564742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. First-principles study of interaction between H2 molecules and BN nanotubes with BN divacancies.
    Hu S; Kan EJ; Yang J
    J Chem Phys; 2007 Oct; 127(16):164718. PubMed ID: 17979382
    [TBL] [Abstract][Full Text] [Related]  

  • 33. DFT study of structural, electronic, and spectroscopic properties of D6d endohedral fullerenes: X@C24H12 (X=Li+, Na+, K+).
    Peng S; Li XJ
    Spectrochim Acta A Mol Biomol Spectrosc; 2009 Jul; 73(1):67-71. PubMed ID: 19243989
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections.
    Du AJ; Sun CH; Zhu ZH; Lu GQ; Rudolph V; Smith SC
    Nanotechnology; 2009 Sep; 20(37):375701. PubMed ID: 19706942
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ni adsorption on Stone-Wales defect sites in single-wall carbon nanotubes.
    Yang SH; Shin WH; Kang JK
    J Chem Phys; 2006 Aug; 125(8):084705. PubMed ID: 16965037
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The reactivity of defects at the sidewalls of single-walled carbon nanotubes: the Stone-Wales defect.
    Bettinger HF
    J Phys Chem B; 2005 Apr; 109(15):6922-4. PubMed ID: 16851780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Theoretical study of boron nitride nanotubes with defects in nitrogen-rich synthesis.
    Kang HS
    J Phys Chem B; 2006 Mar; 110(10):4621-8. PubMed ID: 16526693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes.
    Gao B; Wu Z; Agren H; Luo Y
    J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning the electronic structures of semiconducting SiC nanotubes by N and NHx (x=1,2) groups.
    He T; Zhao M; Xia Y; Li W; Song C; Lin X; Liu X; Mei L
    J Chem Phys; 2006 Nov; 125(19):194710. PubMed ID: 17129153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorbate-induced defect formation and annihilation on graphene and single-walled carbon nanotubes.
    Tsetseris L; Pantelides ST
    J Phys Chem B; 2009 Jan; 113(4):941-4. PubMed ID: 19132838
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.