BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19044945)

  • 41. Moving least-squares enhanced Shepard interpolation for the fast marching and string methods.
    Burger SK; Liu Y; Sarkar U; Ayers PW
    J Chem Phys; 2009 Jan; 130(2):024103. PubMed ID: 19154015
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Excited state calculations using phaseless auxiliary-field quantum Monte Carlo: Potential energy curves of low-lying C(2) singlet states.
    Purwanto W; Zhang S; Krakauer H
    J Chem Phys; 2009 Mar; 130(9):094107. PubMed ID: 19275396
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Accelerating Wave Function Convergence in Interactive Quantum Chemical Reactivity Studies.
    Mühlbach AH; Vaucher AC; Reiher M
    J Chem Theory Comput; 2016 Mar; 12(3):1228-35. PubMed ID: 26788887
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Optimization of selected molecular orbitals in group basis sets.
    Ferenczy GG; Adams WH
    J Chem Phys; 2009 Apr; 130(13):134108. PubMed ID: 19355718
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices.
    Høst S; Olsen J; Jansík B; Thøgersen L; Jørgensen P; Helgaker T
    J Chem Phys; 2008 Sep; 129(12):124106. PubMed ID: 19045005
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Controlled Space Radiation concept for mesh-free semi-analytical technique to model wave fields in complex geometries.
    Banerjee S; Das S; Kundu T; Placko D
    Ultrasonics; 2009 Dec; 49(8):615-22. PubMed ID: 19493555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient Geometry Minimization and Transition Structure Optimization Using Interpolated Potential Energy Surfaces and Iteratively Updated Hessians.
    Zheng J; Frisch MJ
    J Chem Theory Comput; 2017 Dec; 13(12):6424-6432. PubMed ID: 29045137
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The calculation of adiabatic-connection curves from full configuration-interaction densities: two-electron systems.
    Teale AM; Coriani S; Helgaker T
    J Chem Phys; 2009 Mar; 130(10):104111. PubMed ID: 19292527
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A study of the fixed-node error in quantum Monte Carlo calculations of electronic transitions: the case of the singlet n-->pi* (CO) transition of the acrolein.
    Bouabça T; Ben Amor N; Maynau D; Caffarel M
    J Chem Phys; 2009 Mar; 130(11):114107. PubMed ID: 19317531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformational analysis (geometry optimization) of nucleosidic antitumor antibiotic showdomycin by Arguslab 4 software.
    Naz A; Bano K; Bano F; Ghafoor NA; Akhtar N
    Pak J Pharm Sci; 2009 Jan; 22(1):78-82. PubMed ID: 19168426
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation.
    Stenrup M; Lindh R; Fdez Galván I
    J Comput Chem; 2015 Aug; 36(22):1698-708. PubMed ID: 26140702
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Haptic quantum chemistry.
    Marti KH; Reiher M
    J Comput Chem; 2009 Oct; 30(13):2010-20. PubMed ID: 19130501
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3-D gradient coil design--initial theoretical framework.
    While PT; Forbes LK; Crozier S
    IEEE Trans Biomed Eng; 2009 Apr; 56(4):1169-83. PubMed ID: 19174330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Geometry Optimization with Multilayer Methods Using Least-Squares Minimization.
    Liang W; Chapman CT; Frisch MJ; Li X
    J Chem Theory Comput; 2010 Nov; 6(11):3352-7. PubMed ID: 26617089
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring chemical space with discrete, gradient, and hybrid optimization methods.
    Balamurugan D; Yang W; Beratan DN
    J Chem Phys; 2008 Nov; 129(17):174105. PubMed ID: 19045331
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Iterative diagonalization for orbital optimization in natural orbital functional theory.
    Piris M; Ugalde JM
    J Comput Chem; 2009 Oct; 30(13):2078-86. PubMed ID: 19219918
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Open-shell molecular electronic states from the parametric two-electron reduced-density-matrix method.
    DePrince AE; Mazziotti DA
    J Chem Phys; 2009 Apr; 130(16):164109. PubMed ID: 19405563
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Potential energy curves and electronic structure of 3d transition metal hydrides and their cations.
    Goel S; Masunov AE
    J Chem Phys; 2008 Dec; 129(21):214302. PubMed ID: 19063556
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrochemical and electronic structure investigations of the [S3N3]* radical and kinetic modeling of the [S4N4]n/[S3N3]n (n = 0, -1) interconversion.
    Boeré RT; Chivers T; Roemmele TL; Tuononen HM
    Inorg Chem; 2009 Aug; 48(15):7294-306. PubMed ID: 19588981
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Linear-scaling atomic orbital-based second-order Møller-Plesset perturbation theory by rigorous integral screening criteria.
    Doser B; Lambrecht DS; Kussmann J; Ochsenfeld C
    J Chem Phys; 2009 Feb; 130(6):064107. PubMed ID: 19222267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.