These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 19044982)
1. Microscopic calculation of the sticking force for nanodrops on an inclined surface. Berim GO; Ruckenstein E J Chem Phys; 2008 Sep; 129(11):114709. PubMed ID: 19044982 [TBL] [Abstract][Full Text] [Related]
2. Microscopic description of a drop on a solid surface. Ruckenstein E; Berim GO Adv Colloid Interface Sci; 2010 Jun; 157(1-2):1-33. PubMed ID: 20362270 [TBL] [Abstract][Full Text] [Related]
3. Nanodrop on a nanorough solid surface: density functional theory considerations. Berim GO; Ruckenstein E J Chem Phys; 2008 Jul; 129(1):014708. PubMed ID: 18624497 [TBL] [Abstract][Full Text] [Related]
4. Nanodrop on a smooth solid surface with hidden roughness. Density functional theory considerations. Berim GO; Ruckenstein E Nanoscale; 2015 May; 7(17):7873-84. PubMed ID: 25855034 [TBL] [Abstract][Full Text] [Related]
5. Contact angles of nanodrops on chemically rough surfaces. Berim GO; Ruckenstein E Langmuir; 2009 Aug; 25(16):9285-9. PubMed ID: 19419177 [TBL] [Abstract][Full Text] [Related]
6. A nanodrop on the surface of a lubricating liquid covering a rough solid surface. Berim GO; Ruckenstein E Nanoscale; 2015 Oct; 7(38):15701-10. PubMed ID: 26350563 [TBL] [Abstract][Full Text] [Related]
7. Dependence of the macroscopic contact angle on the liquid-solid interaction parameters and temperature. Berim GO; Ruckenstein E J Chem Phys; 2009 May; 130(18):184712. PubMed ID: 19449948 [TBL] [Abstract][Full Text] [Related]
8. Nanodrop on a nanorough hydrophilic solid surface: contact angle dependence on the size, arrangement, and composition of the pillars. Berim GO; Ruckenstein E J Colloid Interface Sci; 2011 Jul; 359(1):304-10. PubMed ID: 21486670 [TBL] [Abstract][Full Text] [Related]
9. A heuristic approach for nanodrops on a smooth solid surface. Berim GO; Ruckenstein E Phys Chem Chem Phys; 2019 Jun; 21(24):13215-13221. PubMed ID: 31179452 [TBL] [Abstract][Full Text] [Related]
10. Simple expression for the dependence of the nanodrop contact angle on liquid-solid interactions and temperature. Berim GO; Ruckenstein E J Chem Phys; 2009 Jan; 130(4):044709. PubMed ID: 19191406 [TBL] [Abstract][Full Text] [Related]
11. Shape and Stability of a Pendant Nanodrop. Berim GO; Ruckenstein E J Phys Chem B; 2018 Aug; 122(34):8284-8292. PubMed ID: 30086635 [TBL] [Abstract][Full Text] [Related]
12. Viscous flow of a volatile liquid on an inclined heated surface. Ajaev VS J Colloid Interface Sci; 2004 Dec; 280(1):165-73. PubMed ID: 15476787 [TBL] [Abstract][Full Text] [Related]
13. Recent progress in the determination of solid surface tensions from contact angles. Tavana H; Neumann AW Adv Colloid Interface Sci; 2007 Mar; 132(1):1-32. PubMed ID: 17222380 [TBL] [Abstract][Full Text] [Related]
14. Contact angle of a nanodrop on a nanorough solid surface. Berim GO; Ruckenstein E Nanoscale; 2015 Feb; 7(7):3088-99. PubMed ID: 25608234 [TBL] [Abstract][Full Text] [Related]
15. Calculation of nanodrop profile from fluid density distribution. Berim GO; Ruckenstein E Adv Colloid Interface Sci; 2016 May; 231():15-22. PubMed ID: 26971399 [TBL] [Abstract][Full Text] [Related]
16. Microscopic Drop Profiles and the Origins of Line Tension. Solomentsev Y; White LR J Colloid Interface Sci; 1999 Oct; 218(1):122-136. PubMed ID: 10489286 [TBL] [Abstract][Full Text] [Related]
17. Nanodroplets on a planar solid surface: temperature, pressure, and size dependence of their density and contact angles. Berim GO; Ruckenstein E Langmuir; 2006 Jan; 22(3):1063-73. PubMed ID: 16430266 [TBL] [Abstract][Full Text] [Related]
18. A New Interpretation of Contact Angle Variations in View of a Recent Analysis of Immersion Calorimetry. Douillard JM; Médout-Marère V J Colloid Interface Sci; 2000 Mar; 223(2):255-260. PubMed ID: 10700410 [TBL] [Abstract][Full Text] [Related]
19. Effect of contact line dynamics on the thermocapillary motion of a droplet on an inclined plate. Karapetsas G; Sahu KC; Matar OK Langmuir; 2013 Jul; 29(28):8892-906. PubMed ID: 23786489 [TBL] [Abstract][Full Text] [Related]
20. Wetting in the nanoscale: a continuum mechanics approach. Barberis F; Capurro M J Colloid Interface Sci; 2008 Oct; 326(1):201-10. PubMed ID: 18684466 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]