These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 19044995)

  • 1. One-dimensional tunneling calculations in the imaginary-frequency, rectilinear saddle-point normal mode.
    Wang Y; Bowman JM
    J Chem Phys; 2008 Sep; 129(12):121103. PubMed ID: 19044995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Communication: Prediction of the rate constant of bimolecular hydrogen exchange in the water dimer using an ab initio potential energy surface.
    Wang Y; Bowman JM; Huang X
    J Chem Phys; 2010 Sep; 133(11):111103. PubMed ID: 20866118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface.
    Wang Y; Braams BJ; Bowman JM; Carter S; Tew DP
    J Chem Phys; 2008 Jun; 128(22):224314. PubMed ID: 18554020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ground state tunneling splitting and the zero point energy of malonaldehyde: a quantum Monte Carlo determination.
    Viel A; Coutinho-Neto MD; Manthe U
    J Chem Phys; 2007 Jan; 126(2):024308. PubMed ID: 17228955
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiconfigurational time-dependent Hartree calculations for tunneling splittings of vibrational states: Theoretical considerations and application to malonaldehyde.
    Hammer T; Coutinho-Neto MD; Viel A; Manthe U
    J Chem Phys; 2009 Dec; 131(22):224109. PubMed ID: 20001026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intramolecular proton transfer in malonaldehyde: accurate multilayer multi-configurational time-dependent Hartree calculations.
    Hammer T; Manthe U
    J Chem Phys; 2011 Jun; 134(22):224305. PubMed ID: 21682512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical studies of the tunneling splitting of malonaldehyde using the multiconfiguration time-dependent Hartree approach.
    Schröder M; Gatti F; Meyer HD
    J Chem Phys; 2011 Jun; 134(23):234307. PubMed ID: 21702556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode-specific tunneling using the Qim path: theory and an application to full-dimensional malonaldehyde.
    Wang Y; Bowman JM
    J Chem Phys; 2013 Oct; 139(15):154303. PubMed ID: 24160509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced-dimensional quantum approach to tunneling splittings using saddle-point normal coordinates.
    Kamarchik E; Wang Y; Bowman J
    J Phys Chem A; 2009 Jul; 113(26):7556-62. PubMed ID: 19552477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effects of asymmetric motions on the tunneling splittings in formic acid dimer.
    Barnes GL; Sibert EL
    J Chem Phys; 2008 Oct; 129(16):164317. PubMed ID: 19045276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The all-Cartesian reaction plane Hamiltonian: formulation and application to the H-atom transfer in tropolone.
    Giese K; Kühn O
    J Chem Phys; 2005 Aug; 123(5):054315. PubMed ID: 16108647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reaction surface Hamiltonian study of malonaldehyde.
    Tew DP; Handy NC; Carter S
    J Chem Phys; 2006 Aug; 125(8):084313. PubMed ID: 16965018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ground state tunneling splitting of malonaldehyde: accurate full dimensional quantum dynamics calculations.
    Coutinho-Neto MD; Viel A; Manthe U
    J Chem Phys; 2004 Nov; 121(19):9207-10. PubMed ID: 15538840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate constants from the reaction path Hamiltonian. II. Nonseparable semiclassical transition state theory.
    Peters B; Bell AT; Chakraborty A
    J Chem Phys; 2004 Sep; 121(10):4461-6. PubMed ID: 15332875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Jet cooled spectroscopy of H2DO+: Barrier heights and isotope-dependent tunneling dynamics from H3O+ to D3O+.
    Dong F; Nesbitt DJ
    J Chem Phys; 2006 Oct; 125(14):144311. PubMed ID: 17042594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunneling splitting in double-proton transfer: direct diagonalization results for porphycene.
    Smedarchina Z; Siebrand W; Fernández-Ramos A
    J Chem Phys; 2014 Nov; 141(17):174312. PubMed ID: 25381519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Torsion-vibration coupling in methanol: the adiabatic approximation and intramolecular vibrational redistribution scaling.
    Clasp TN; Perry DS
    J Chem Phys; 2006 Sep; 125(10):104313. PubMed ID: 16999532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculations of Mode-Specific Tunneling of Double-Hydrogen Transfer in Porphycene Agree with and Illuminate Experiment.
    Homayoon Z; Bowman JM; Evangelista FA
    J Phys Chem Lett; 2014 Aug; 5(15):2723-7. PubMed ID: 26277970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy atom tunneling in chemical reactions: study of H + LiF collisions.
    Weck PF; Balakrishnan N
    J Chem Phys; 2005 Jun; 122(23):234310. PubMed ID: 16008444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full dimensional time-dependent quantum dynamics study of the H + NH3 --> H2 + NH2 reaction.
    Yang M
    J Chem Phys; 2008 Aug; 129(6):064315. PubMed ID: 18715077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.